cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 198 results. Next

A081844 Number of irreducible factors of x^(2n+1) - 1 over GF(2).

Original entry on oeis.org

1, 2, 2, 3, 3, 2, 2, 5, 3, 2, 6, 3, 3, 4, 2, 7, 5, 6, 2, 5, 3, 4, 8, 3, 5, 8, 2, 5, 5, 2, 2, 13, 7, 2, 6, 3, 9, 8, 6, 3, 5, 2, 12, 5, 9, 10, 14, 5, 3, 8, 2, 3, 15, 2, 4, 5, 5, 6, 12, 9, 3, 8, 4, 19, 11, 2, 10, 11, 3, 2, 6, 5, 7, 10, 2, 11, 13, 14, 4, 5, 9, 2, 14, 3, 3, 12, 2, 9, 5, 2, 2, 5, 7, 8, 20, 3, 3, 20
Offset: 0

Views

Author

N. J. A. Sloane, Apr 11 2003

Keywords

Comments

Also number of nonisomorphic "pure" chain rings with certain parameters.
Number of cycles under doubling map x -> 2*x (mod 2*n+1). - Joerg Arndt, Jan 22 2024

References

  • R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983; Theorem 2.47 page 65.

Crossrefs

Cf. A001037.
A000374 gives number of factors of x^n-1 for any n.
Cf. A037226 (number of primitive irreducible factors of x^(2n+1) - 1 over integers mod 2).
Cf. A006694 (number of factors of (x^(2*n+1) - 1) / (x - 1) over GF(2) ).

Programs

  • Maple
    with(numtheory); o := n->if n=1 then 1 else order(2,n); fi; A081844 := proc(n) local d, t1; t1 := 0; for d to n do if n mod d = 0 then t1 := t1 + phi(d)/o(d); end if; end do; t1; end proc;
    Factor(x^(2*n+1)-1) mod 2; nops(%);
  • Mathematica
    a[n_] := Length[Factor[x^(2n+1)-1, Modulus->2] ]; a[0]=1; (* or : *)
    a[n_] := Sum[ EulerPhi[d] / MultiplicativeOrder[2, d ], {d, Divisors[2n + 1]}]; Table[ a[n], {n, 0, 97}] (* Jean-François Alcover, Dec 14 2011 *)
  • PARI
    a(n)=sumdiv(2*n+1,d,eulerphi(d)/znorder(Mod(2,d)));
    vector(122,n,a(n-1)) /* Joerg Arndt, Jan 18 2011 */
    
  • Python
    from sympy import totient, n_order, divisors
    def A081844(n): return sum(totient(d)//n_order(2,d) for d in divisors((n+1<<1)-1,generator=True) if d>1) + 1 # Chai Wah Wu, Apr 09 2024

Formula

a(n) = Sum_{ d| 2*n+1 } phi(d)/ord_2(d), where phi = A000010, ord_2 = A002326.
a(n) = A006694(n) + 1. - Joerg Arndt, Apr 01 2019
a(n) = A000374(2*n+1). - Joerg Arndt, Jan 22 2024

A293218 a(n) = A007913(A292270(n)).

Original entry on oeis.org

1, 1, 1, 1, 13, 1, 1, 1, 38, 1, 3, 26, 31, 1, 1, 1, 103, 73, 1, 42, 14, 7, 91, 3, 58, 14, 1, 170, 303, 1, 1, 1, 66, 1, 385, 91, 93, 301, 65, 563, 1093, 1, 11, 355, 38, 118, 83, 1, 1254, 763, 1, 1043, 39, 1, 249, 141, 238, 19, 71, 43, 133, 11, 781, 1, 649, 1, 554, 1081, 614, 1, 1633, 5, 317, 1398, 1, 269, 626, 10, 527, 1285, 1191, 1
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2017

Keywords

Crossrefs

Cf. A292938 (gives the positions of ones).

Programs

Formula

a(n) = A007913(A292270(n)).

A003572 Order of 3 mod 3n+2.

Original entry on oeis.org

1, 4, 2, 5, 6, 16, 4, 11, 3, 28, 8, 12, 18, 8, 10, 23, 20, 52, 6, 29, 30, 12, 16, 35, 18, 30, 4, 41, 42, 88, 22, 36, 42, 100, 6, 53, 20, 112, 28, 48, 10, 100, 32, 65, 22, 136, 12, 15, 12, 148, 18, 60, 78, 66, 8, 83, 16, 172
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..60],n->OrderMod(3,3*n+2)); # Muniru A Asiru, Feb 16 2019
  • Maple
    with(numtheory): f := n->order(3,3*n+2);
  • Mathematica
    Table[MultiplicativeOrder[3, 3*n + 2], {n, 0, 57}] (* Jinyuan Wang, Feb 16 2019 *)
  • PARI
    a(n) = znorder(Mod(3, 3*n+2)); \\ Michel Marcus, Feb 16 2019
    

A003574 Order of 4 mod 4n-1.

Original entry on oeis.org

1, 3, 5, 2, 9, 11, 9, 5, 6, 6, 7, 23, 4, 10, 29, 3, 33, 35, 10, 39, 41, 14, 6, 18, 15, 51, 53, 18, 22, 12, 10, 7, 65, 18, 69, 30, 21, 15, 10, 26, 81, 83, 9, 30, 89, 30, 20, 95, 6, 99, 42, 33, 105, 14, 9, 37, 113, 15, 46, 119
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A003573. Second bisection of A053447.

Programs

  • GAP
    List([1..70],n->OrderMod(4,4*n-1)); # Muniru A Asiru, Feb 19 2019
    
  • Maple
    with(numtheory): f := n->order(4,4*n-1);
  • PARI
    a(n) = znorder(Mod(4, 4*n-1)); \\ Michel Marcus, Feb 22 2019

Formula

a(n) = A053447(2*n-1) for n >= 1. - Jianing Song, Oct 03 2022

A014659 Odd numbers that do not divide 2^k + 1 for any k >= 1.

Original entry on oeis.org

7, 15, 21, 23, 31, 35, 39, 45, 47, 49, 51, 55, 63, 69, 71, 73, 75, 77, 79, 85, 87, 89, 91, 93, 95, 103, 105, 111, 115, 117, 119, 123, 127, 133, 135, 141, 143, 147, 151, 153, 155, 159, 161, 165, 167, 175, 183, 187, 189, 191, 195, 199, 203, 207, 213, 215, 217, 219
Offset: 1

Views

Author

Keywords

Comments

This is the subset of odd integers > 1 as (2*n - 1) in A179480 such that A179480(n) is even. Example: A179480(18) = 6, even; corresponding to (2*18 - 1), 35. Then 35 is in A014659. A014657 is the subset of odd terms > 1 corresponding to odd terms in A179480. - Gary W. Adamson, Aug 20 2012
From Wolfdieter Lang, Aug 22 2020: (Start)
These odd numbers are the moduli named 2*n+1 in the definition of A003558(n), for n >= 1, for which the + sign applies. The signs in the definition of A003558 are given in A332433.
These are the odd numbers N >= 3 for which A003558((N-1)/2) = A002326((N+1)/2), the period length P(N) of the cycles {2^k (mod N)}_{k=0}^(P(N)-1). Compare the periods given in A201908((N+1)/2, k). (End)

Crossrefs

Cf. A014657, numbers that divide 2^k + 1 for some k.

Extensions

More terms from Don Reble, Nov 03 2001

A050975 Haupt-exponents of 3 modulo integers relatively prime to 3.

Original entry on oeis.org

1, 2, 4, 6, 2, 4, 5, 3, 6, 4, 16, 18, 4, 5, 11, 20, 3, 6, 28, 30, 8, 16, 12, 18, 18, 4, 8, 42, 10, 11, 23, 42, 20, 6, 52, 20, 6, 28, 29, 10, 30, 16, 12, 22, 16, 12, 35, 12, 18, 18, 30, 78, 4, 8, 41, 16, 42, 10, 88, 6, 22, 23, 36, 48, 42, 20, 100, 34, 6, 52, 53, 27, 20, 12
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A001651 := proc(n)
            (3*(2*n-1)-(-1)^n)/4 ;
    end proc:
    A050975 := proc(n)
            local gcd3 ;
            gcd3 := A001651(n+1);
            numtheory[order](3,gcd3) ;
    end proc: # R. J. Mathar, Oct 21 2012

A050977 Haupt-exponents of 5 modulo integers relatively prime to 5.

Original entry on oeis.org

1, 2, 1, 2, 6, 2, 6, 5, 2, 4, 6, 4, 16, 6, 9, 6, 5, 22, 2, 4, 18, 6, 14, 3, 8, 10, 16, 6, 36, 9, 4, 20, 6, 42, 5, 22, 46, 4, 42, 16, 4, 52, 18, 6, 18, 14, 29, 30, 3, 6, 16, 10, 22, 16, 22, 5, 6, 72, 36, 9, 30, 4, 39, 54, 20, 82, 6, 42, 14, 10, 44, 12, 22, 6, 46, 8, 96, 42, 30, 25, 16
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A002326 (base 2), A050975 (base 3), A002329.

Programs

  • Maple
    n := 1 :
    for i from 2 to 10000 do
        if igcd(i,5) = 1 then
            printf("%d %d\n",n,numtheory[order](5,i)) ;
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Oct 14 2014

A059908 a(n) = |{m : multiplicative order of n mod m = 3}|.

Original entry on oeis.org

0, 1, 2, 4, 3, 2, 8, 2, 12, 5, 12, 2, 12, 2, 4, 20, 5, 6, 10, 2, 6, 14, 12, 2, 40, 9, 4, 6, 18, 10, 16, 6, 6, 8, 12, 12, 39, 2, 12, 8, 8, 6, 16, 6, 18, 26, 12, 6, 50, 3, 18, 8, 18, 2, 32, 12, 8, 20, 4, 6, 60, 2, 12, 26, 21, 4, 64, 10, 6, 8, 8, 6, 20, 14, 4, 12, 6, 4, 64, 2, 70, 7, 12, 6, 24
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Examples

			a(2) = |{7}| = 1, a(3) = |{13,26}| = 2, a(4) = |{7,9,21,63}| = 4, a(5) = |{31,62,124}| = 3, a(6) = |{43,215}| = 2, a(7) = |{9,18,19,38,57,114,171,342}| = 8,...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0,n^3-1]-DivisorSigma[0,n-1],{n,90}] (* Harvey P. Dale, Feb 03 2015 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^3-1) - numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^3-1)-tau(n-1), where tau(n) = number of divisors of n A000005. Generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.

A108989 Composite numbers k with primitive root 2; i.e., the order of 2 modulo k is phi(k).

Original entry on oeis.org

9, 25, 27, 81, 121, 125, 169, 243, 361, 625, 729, 841, 1331, 1369, 2187, 2197, 2809, 3125, 3481, 3721, 4489, 6561, 6859, 6889, 10201, 11449, 14641, 15625, 17161, 19321, 19683, 22201, 24389, 26569, 28561, 29929, 32041, 32761, 38809, 44521, 50653
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Jul 28 2005

Keywords

Comments

There exist no even numbers with primitive root 2. All entries are odd. They are all the powers of odd primes. - V. Raman, Nov 20 2012

Examples

			Modulo 9: 2^1 == 2, 2^2 == 4, 2^3 == 8, 2^4 == 7, 2^5 == 5, 2^6 == 1 and phi(9) == 6.
		

Crossrefs

Intersection of A002808 and A167791.

Programs

  • GAP
    for i in [2..100000] do if not IsPrime(i) then if IsPrimitiveRootMod(2,i) then Display(i); fi; fi; od;
    
  • Mathematica
    nn=51000; Select[Complement[Range[2, nn], Prime[Range[PrimePi[nn]]]], PrimitiveRoot[#] == 2&] (* Harvey P. Dale, Jul 25 2011 *)
    seq[max_] := Module[{ps = Select[Range[2, Floor[Sqrt[max]]], PrimeQ], s = {}}, Do[s = Join[s, Select[p^Range[2, Floor[Log[p, max]]], PrimitiveRoot[#] == 2 &]], {p, ps}]; Sort[s]]; seq[10^5] (* Amiram Eldar, Nov 10 2023 *)
  • PARI
    for(n=3,100000,if(n%2==1&&isprime(n)==0&&znorder(Mod(2,n))==eulerphi(n),print1(n","))) /* V. Raman, Nov 20 2012 */

A122929 Multiplicative order of 2 mod A141232(n).

Original entry on oeis.org

11, 28, 36, 52, 48, 60, 52, 148, 76, 68, 51, 52, 29, 92, 156, 92, 29, 179, 166, 100, 44, 102, 239, 156, 50, 25, 51, 364, 224, 204, 244, 166, 66, 346, 194, 388, 618, 92, 388, 102, 660, 371, 388, 29, 772, 828, 239, 460, 55, 292, 431, 166, 882, 1060, 532, 155, 68
Offset: 1

Views

Author

Vladimir Shevelev, Jul 05 2008, Jul 12 2008, Jul 23 2008

Keywords

Crossrefs

Programs

  • PARI
    a137576(n)=my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1;
    lista(nn) = {forcomposite(n=1, nn, if ((n % 2) && (a137576((n-1)/2) == n), print1(znorder(Mod(2, n)), ", ");););} \\ Michel Marcus, Feb 09 2015

Extensions

More terms from Michel Marcus, Feb 09 2015
Previous Showing 81-90 of 198 results. Next