cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A126426 a(n) = n^5 - n - 1.

Original entry on oeis.org

-1, 29, 239, 1019, 3119, 7769, 16799, 32759, 59039, 99989, 161039, 248819, 371279, 537809, 759359, 1048559, 1419839, 1889549, 2476079, 3199979, 4084079, 5153609, 6436319, 7962599, 9765599, 11881349, 14348879, 17210339, 20511119, 24299969, 28629119, 33554399, 39135359, 45435389
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Comments

Every number gives remainder 29 when divided by 30, remainder 9 when divided by 10, and remainder 4 when divided by 5.

Crossrefs

Programs

Formula

G.f.: x*(x^5-5*x^4+40*x^3+50*x^2+35*x-1)/(1-x)^6. - Colin Barker, Oct 07 2012

A126425 Primes of the form k^5-k-1.

Original entry on oeis.org

29, 239, 1019, 3119, 99989, 161039, 759359, 1048559, 1419839, 2476079, 3199979, 4084079, 14348879, 17210339, 24299969, 45435389, 60466139, 164916179, 254803919, 312499949, 550731719, 1934917559, 2373046799, 3707398349
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Comments

Every number give rest 29 when divided 30, rest 9 when divided 10, rest 4 when divided 5

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[x^5 - x - 1], AppendTo[a, x^5 - x - 1]], {x, 1, 100}]; a
    Select[Table[k^5-k-1,{k,90}],PrimeQ] (* Harvey P. Dale, Apr 21 2024 *)

Formula

a(n) = A126426(A126427(n)). - Amiram Eldar, Mar 13 2020

A126427 Numbers k for which k^5-k-1 is prime.

Original entry on oeis.org

2, 3, 4, 5, 10, 11, 15, 16, 17, 19, 20, 21, 27, 28, 30, 34, 36, 44, 48, 50, 56, 72, 75, 82, 84, 97, 101, 103, 105, 109, 113, 117, 130, 133, 141, 154, 157, 163, 177, 179, 188, 197, 204, 207, 218, 240, 248, 249, 250, 252, 262, 268, 281, 283, 285, 286, 291, 301, 305, 315
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[x^5 - x - 1], AppendTo[a, x]], {x, 1, 1000}]; a

A094210 Numbers k such that k^2 + 3k + 1 is a prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 18, 19, 20, 23, 25, 27, 29, 30, 34, 37, 38, 40, 43, 44, 45, 47, 49, 52, 53, 54, 55, 58, 59, 63, 64, 65, 67, 69, 75, 82, 84, 85, 88, 92, 93, 95, 99, 100, 102, 113, 114, 119, 124, 125, 129, 130, 133, 137, 139, 140, 143, 144, 147, 148
Offset: 1

Views

Author

Giovanni Teofilatto, May 27 2004

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | IsPrime(n^2 + 3*n + 1)]; // Vincenzo Librandi, Nov 11 2014
  • Mathematica
    Select[ Range[150], PrimeQ[ #^2 + 3# + 1] &] (* Robert G. Wilson v, May 29 2004 *)

Formula

a(n) = A002328(n)-2. - R. J. Mathar, Aug 08 2012

Extensions

Edited and extended by Robert G. Wilson v, May 29 2004

A110013 Squares of the form 4p + 5, where p is a prime.

Original entry on oeis.org

25, 49, 81, 121, 169, 289, 361, 441, 529, 729, 961, 1089, 1521, 1681, 1849, 2401, 2809, 3249, 3721, 3969, 5041, 5929, 6241, 6889, 7921, 8281, 8649, 9409, 10201, 11449, 11881, 12321, 12769, 14161, 14641, 16641, 17161, 17689, 18769, 19881, 23409
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 03 2005

Keywords

Comments

The sequence contain all squares of greater of twin primes.

Crossrefs

Programs

  • Mathematica
    Select[4#+5&/@Prime[Range[900]],IntegerQ[Sqrt[#]]&]  (* Harvey P. Dale, Jan 29 2011 *)

Formula

a(n) = 4*A002327(n) + 5 = A088502(n)^2.

Extensions

Corrected and extended by Ray Chandler, Sep 04 2005

A126434 Primes of the form k^6-k-1.

Original entry on oeis.org

61, 4091, 15619, 46649, 2985971, 16777199, 24137551, 63999979, 4750104199, 8303765579, 27680640569, 30840979399, 34296447191, 68719476671, 117648999929, 351298031531, 377149515539, 606355001251, 689869780961
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    k = 6; a = {}; Do[If[PrimeQ[x^k - x - 1], AppendTo[a, x^k - x - 1]], {x, 1, 100}]; a
    Select[Table[n^6-n-1,{n,200}],PrimeQ] (* Harvey P. Dale, Mar 28 2013 *)

A237615 a(n) = |{0 < k < n: k^2 + k - 1 and pi(k*n) are both prime}|, where pi(.) is given by A000720.

Original entry on oeis.org

0, 0, 1, 1, 0, 2, 2, 1, 2, 1, 3, 2, 1, 4, 1, 3, 4, 4, 2, 4, 3, 6, 2, 2, 2, 3, 7, 4, 3, 4, 5, 6, 1, 3, 2, 3, 9, 3, 3, 4, 7, 5, 8, 5, 2, 2, 5, 5, 4, 5, 6, 4, 5, 6, 10, 6, 6, 10, 9, 9, 10, 12, 2, 8, 7, 3, 6, 6, 4, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 10 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 5.
(ii) For each n = 4, 5, ..., there is a positive integer k < n with k^2 + k - 1 and pi(k*n) + 1 both prime. Also, for any integer n > 6, there is a positive integer k < n with k^2 + k - 1 and pi(k*n) - 1 both prime.
(iii) For every integer n > 15, there is a positive integer k < n such that pi(k) - 1 and pi(k*n) are both prime.
Note that part (i) is a refinement of the first assertion in the comments in A237578.

Examples

			a(8) = 1 since 4^2 + 4 - 1 = 19 and pi(4*8) = 11 are both prime.
a(33) = 1 since 28^2 + 28 - 1 = 811 and pi(28*33) = 157 are both prime.
		

Crossrefs

Programs

  • Mathematica
    p[k_,n_]:=PrimeQ[k^2+k-1]&&PrimeQ[PrimePi[k*n]]
    a[n_]:=Sum[If[p[k,n],1,0],{k,1,n-1}]
    Table[a[n],{n,1,70}]

A237642 Primes of the form n^2-n-1 (for some n) such that p^2-p-1 is also prime.

Original entry on oeis.org

5, 11, 29, 71, 131, 181, 379, 419, 599, 1979, 2069, 3191, 4159, 13339, 14519, 17291, 19739, 20879, 21169, 26731, 30449, 31151, 39799, 48619, 69959, 70489, 112559, 122849, 132859, 139501, 149381, 183611, 186191, 198469, 212981, 222311, 236681
Offset: 1

Views

Author

Derek Orr, Feb 10 2014

Keywords

Comments

Except a(1), all numbers are congruent to 1 mod 10 or 9 mod 10.

Examples

			11 is prime and equals 4^2-4-1, and 11^2-11-1 = 109 is prime. So, 11 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n^2-n-1,{n,500}],AllTrue[{#,#^2-#-1},PrimeQ]&] (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    s=[]; for(n=1, 1000, p=n^2-n-1; if(isprime(p) && isprime(p^2-p-1), s=concat(s, p))); s \\ Colin Barker, Feb 11 2014
  • Python
    import sympy
    from sympy import isprime
    {print(n**2-n-1) for n in range(10**3) if isprime(n**2-n-1) and isprime((n**2-n-1)**2-(n**2-n-1)-1)}
    

A356247 Denominator of the continued fraction 1/(2 - 3/(3 - 4/(4 - 5/(...(n-1) - n/(-1))))).

Original entry on oeis.org

1, 5, 11, 19, 29, 41, 11, 71, 89, 109, 131, 31, 181, 19, 239, 271, 61, 31, 379, 419, 461, 101, 29, 599, 59, 701, 151, 811, 79, 929, 991, 211, 59, 41, 1259, 1, 281, 1481, 1559, 149, 1721, 1, 61, 1979, 2069, 2161, 1, 2351, 79, 2549, 241, 1, 2861, 2969, 3079, 3191
Offset: 2

Views

Author

Mohammed Bouras, Jul 30 2022

Keywords

Comments

Conjecture 1: Every term of this sequence is either a prime number or 1.
Conjecture 2: The sequence contains all prime numbers which ends with a 1 or 9.
Conjecture 3: Except for 5, the primes all appear exactly twice.
a(n) divides n^2 - n - 1, which is the unreduced denominator.
Conjecture: The ordered sequence of prime values is A038872. - Bill McEachen, Jul 28 2025
For a proof of Conjectures 1-3, see Cloitre (2025). - Sean A. Irvine, Aug 25 2025

Examples

			For n=2, 1/(2 - 3) = -1, so a(2)=1.
For n=3, 1/(2 - 3/(3 - 4)) = 1/5, so a(3)=5.
For n=4, 1/(2 - 3/(3 - 4/(4 - 5))) = 7/11, so a(4)=11.
For n=5, 1/(2 - 3/(3 - 4/(4 - 5/(5 - 6)))) = 23/19, so a(5)=19.
For n=6, 1/(2 - 3/(3 - 4/(4 - 5/(5 - 6/(6 - 7))))) = 73/29, so a(6)=29.
a(23) = a(79) = 23 + 79 - 1 = 101.
a(26) = a(34) = gcd(26^2 - 26 -1, 34^2 - 34 - 1) = gcd(649, 1121) = 59.
		

Crossrefs

Cf. A002327 (primes of the form k^2-k-1), A028387, A051403, A165900, A356684.

Programs

  • Mathematica
    a[n_] := ContinuedFractionK[-i-1, If[i == n, 1, i+1], {i, 1, n}] //
       Denominator;
    Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Aug 11 2022 *)
  • PARI
    a(n) = if (n==1, 1, n--; my(v = vector(2*n, k, (k+4)\2)); my(q = 1/(v[2*n-1] - v[2*n])); forstep(k=2*n-3, 1, -2, q = v[k] - v[k+1]/q; ); denominator(1/q)); \\ Michel Marcus, Aug 07 2022
    
  • Python
    from fractions import Fraction
    def A356247(n):
        k = -1
        for i in range(n-1,1,-1):
            k = i-Fraction(i+1,k)
        return abs(k.numerator) # Chai Wah Wu, Aug 23 2022

Formula

a(n) = (n^2 - n - 1)/gcd(n^2 - n - 1, A356684(n)).
If conjecture 3 is true, then we have:
a(n) = a(m) = n + m - 1.
a(n) = a(m) = gcd(n^2 - n - 1, m^2 - m - 1).
a(n) = a(a(n) - n + 1).

A076846 Primes of the form n^k + n - 1, where k>0 is minimal.

Original entry on oeis.org

3, 5, 7, 29, 11, 13, 71, 17, 19, 131, 23, 181, 2177953337809371149, 29, 31, 83537, 5849, 37, 419, 41, 43, 279863, 47, 15649, 701, 53, 811, 420707233300229, 59, 61
Offset: 2

Views

Author

Benoit Cloitre, Nov 20 2002

Keywords

Comments

The next term is too large to include.

Crossrefs

Programs

Extensions

Offset corrected by Reinhard Zumkeller, Jul 17 2014
Previous Showing 11-20 of 39 results. Next