cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 73 results. Next

A139350 Decimal expansion of csc((1+sqrt(5))/2), where (1+sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 6, 7, 3, 6, 6, 1, 4, 6, 5, 2, 2, 5, 4, 8, 9, 6, 1, 6, 7, 1, 1, 3, 5, 1, 7, 0, 5, 5, 8, 7, 7, 9, 4, 4, 6, 1, 5, 3, 1, 8, 0, 6, 6, 2, 4, 2, 8, 2, 0, 2, 8, 2, 4, 0, 4, 9, 7, 6, 6, 5, 7, 8, 8, 2, 6, 9, 7, 8, 7, 7, 5, 5, 0, 9, 6, 1, 7, 2, 9, 4, 7, 0, 3, 9, 9, 5, 8, 1, 1, 1, 3, 6, 1, 9, 2, 6, 8, 8, 2
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			1.00111673661465225489616711351705587794461531806624...
		

Crossrefs

Programs

Formula

Equals 1/A139345. - Amiram Eldar, Feb 07 2022

Extensions

Edited by Bruno Berselli, Feb 19 2013

A140232 a(n) = ceiling(n*exp((1+sqrt(5))/2)).

Original entry on oeis.org

6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 238, 243, 248, 253, 258, 263, 268, 273, 278, 283
Offset: 1

Views

Author

Mohammad K. Azarian, May 13 2008

Keywords

Crossrefs

Programs

  • Magma
    phi:=(1+Sqrt(5))/2; [Ceiling(n*Exp(phi)): n in [1..60]]; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    Ceiling[Exp[GoldenRatio]*Range[60]] (* G. C. Greubel, Jun 30 2019 *)
  • PARI
    phi=(1+sqrt(5))/2; vector(60, n, ceil(n*exp(phi)) ) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [ceil(n*exp(golden_ratio)) for n in (1..60)] # G. C. Greubel, Jun 30 2019

Formula

a(n) = ceiling(n*A139341). - R. J. Mathar, Feb 06 2009

A145434 Decimal expansion of Sum_{n>=1} (-1)^(n-1)*n^2/binomial(2n,n).

Original entry on oeis.org

1, 2, 5, 5, 6, 7, 2, 8, 4, 7, 2, 2, 8, 7, 9, 6, 7, 6, 8, 8, 8, 8, 4, 5, 3, 4, 1, 3, 6, 3, 9, 5, 1, 5, 6, 5, 9, 6, 6, 0, 3, 4, 3, 4, 5, 3, 9, 6, 7, 7, 6, 8, 2, 7, 6, 1, 9, 4, 3, 9, 5, 1, 1, 6, 8, 0, 5, 9, 5, 1, 0, 2, 7, 6, 3, 1, 0, 9, 4, 4, 3, 0, 9, 1, 0, 8, 0, 7, 7, 8, 8, 2, 4
Offset: 0

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Comments

The numerator in the Apelblat table lacks the square (typo).

Examples

			0.125567284722879676...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.40.

Crossrefs

Programs

  • Maple
    evalf( 4/25-4/125*5^(1/2)*log(1/2+1/2*5^(1/2)), 120) ;
  • Mathematica
    RealDigits[HypergeometricPFQ[{2, 2, 2}, {1, 3/2}, -1/4]/2, 10, 93] // First
    (* or *) RealDigits[4/25 - 4*Sqrt[5]*Log[GoldenRatio]/125, 10, 93] // First (* Jean-François Alcover, Feb 13 2013, updated Oct 27 2014 *)

Formula

Equals 4*(5-A002163*A002390)/125.

A152115 Decimal expansion of the dilogarithm of (the golden mean minus 1), Li_2(phi-1).

Original entry on oeis.org

7, 5, 5, 3, 9, 5, 6, 1, 9, 5, 3, 1, 7, 4, 1, 4, 6, 9, 3, 8, 6, 5, 2, 0, 0, 2, 8, 7, 5, 6, 0, 8, 2, 3, 5, 3, 5, 1, 4, 9, 6, 3, 5, 9, 0, 6, 7, 4, 7, 8, 0, 1, 9, 1, 8, 2, 6, 0, 3, 3, 7, 0, 8, 9, 3, 2, 2, 0, 9, 1, 3, 6, 6, 7, 4, 9, 5, 8, 7, 1, 1, 3, 1, 5, 1, 2, 2, 7, 9, 3, 2, 8, 5, 4, 6, 6, 8, 2, 8, 1, 2, 6, 6, 5, 9
Offset: 0

Views

Author

R. J. Mathar, Nov 24 2008

Keywords

Comments

Equals Li_2(phic) = L(phic)-log(phic)*log(1-phic)/2 = A002388/10 - A002390^2, where Li_2(.) is the dilogarithm, L(.) is Roger's dilogarithm, where phic = phi-1 = A094214, where -log(phic)= A002390 = log(1-phic)/2.

Examples

			Equals 0.7553956195317414693865200287560823535149635906747...
		

References

  • L. B. W. Jolley, Summation of Series, Dover (1961)

Programs

  • Mathematica
    RealDigits[ PolyLog[2, (Sqrt[5]-1)/2], 10, 105] // First (* Jean-François Alcover, Feb 12 2013 *)
  • PARI
    phic=(sqrt(5)-1)/2 ; dilog(phic);

Formula

Equals sum_{n>=1} x^n/n^2 for x= 2*sin(Pi/10). [Jolley eq (360d)]

Extensions

More terms from Jean-François Alcover, Feb 12 2013

A349851 Decimal expansion of Sum_{k>=1} H(k)*L(k)/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and L(k) = A000032(k) is the k-th Lucas number.

Original entry on oeis.org

8, 4, 6, 2, 9, 7, 2, 4, 9, 2, 9, 9, 9, 7, 1, 2, 2, 4, 5, 3, 9, 7, 7, 2, 5, 0, 5, 8, 2, 5, 5, 1, 1, 3, 6, 6, 2, 6, 9, 8, 7, 0, 7, 6, 3, 1, 5, 6, 4, 4, 2, 8, 0, 7, 2, 2, 9, 4, 1, 4, 1, 0, 9, 6, 8, 8, 5, 9, 7, 3, 8, 8, 6, 4, 2, 9, 4, 8, 7, 9, 0, 7, 2, 5, 0, 0, 8, 2, 6, 0, 8, 9, 5, 0, 7, 1, 1, 6, 7, 9, 3, 1, 5, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 02 2021

Keywords

Examples

			8.46297249299971224539772505825511366269870763156442...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[6*Log[2] + 4*Sqrt[5]*Log[GoldenRatio], 10, 100][[1]]

Formula

Equals log(64*phi^(4*sqrt(5))) = 6*log(2) + 4*sqrt(5)*log(phi), where phi is the golden ratio (A001622).

A145436 Decimal expansion of Sum_{n>=0} (-1)^n/((2n+1)^2*binomial(2n,n)).

Original entry on oeis.org

9, 5, 0, 2, 3, 9, 6, 0, 5, 1, 1, 6, 6, 4, 3, 2, 5, 8, 9, 8, 1, 6, 2, 7, 9, 5, 2, 9, 5, 1, 4, 2, 6, 9, 0, 9, 1, 6, 9, 7, 3, 0, 8, 5, 1, 0, 5, 8, 9, 0, 1, 8, 2, 5, 2, 8, 9, 6, 5, 4, 5, 4, 3, 3, 0, 0, 6, 2, 1, 4, 3, 3, 7, 0, 2, 3, 1, 5, 4, 3, 4, 8, 7, 8, 4, 6, 5, 2, 5, 9, 3, 6, 0
Offset: 0

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Examples

			0.95023960511664325898162795295142690916973085105890...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.45.
  • Bruce C. Berndt, Ramanujan's Notebooks, Part 1, Springer-Verlag, 1985, Chapter 9, p. 289, eq. (vii).
  • Calvin C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Springer, 2013. See p. 222.

Crossrefs

Programs

  • Maple
    1/6*Pi^2-3*ln(1/2+1/2*5^(1/2))^2 ;
  • Mathematica
    RealDigits[Zeta[2] - 3 * Log[GoldenRatio]^2, 10, 120][[1]] (* Amiram Eldar, May 06 2023 *)
  • PARI
    Pi^2/6-3*log(1/2+sqrt(5)/2)^2 \\ Charles R Greathouse IV, Sep 13 2013

Formula

Equals A013661 - 3*A002390^2.

A249389 Decimal expansion of the constant 'B' appearing in the asymptotic expression of the number of partitions of n as (B/(2*Pi*n))*exp(2*B*sqrt(n)), in case of partitions into integers, each of which occurring only an odd number of times.

Original entry on oeis.org

1, 1, 3, 3, 8, 4, 1, 5, 5, 6, 2, 0, 5, 4, 9, 6, 4, 6, 6, 7, 3, 3, 7, 6, 8, 6, 3, 2, 4, 6, 0, 5, 0, 1, 9, 3, 1, 2, 0, 6, 0, 2, 9, 6, 2, 8, 8, 0, 8, 6, 5, 4, 0, 1, 0, 4, 1, 7, 3, 8, 0, 6, 7, 2, 7, 8, 0, 8, 4, 7, 5, 5, 1, 2, 5, 9, 1, 7, 9, 4, 5, 8, 5, 8, 3, 6, 2, 1, 1, 9, 0, 6, 3, 3, 9, 5, 9, 6, 2
Offset: 1

Views

Author

Jean-François Alcover, Oct 27 2014

Keywords

Examples

			1.133841556205496466733768632460501931206029628808654...
		

Crossrefs

Programs

  • Mathematica
    B = Sqrt[Pi^2/12 + 2*Log[GoldenRatio]^2]; RealDigits[B, 10, 99] // First
  • PARI
    sqrt(Pi^2/12 + 2*(log((1+sqrt(5))/2))^2) \\ G. C. Greubel, Apr 06 2017

Formula

B = sqrt(Pi^2/12 + 2*log(phi)^2), where phi is the golden ratio.

A344041 Decimal expansion of Sum_{k>=1} F(k)/(k*2^k), where F(k) is the k-th Fibonacci number (A000045).

Original entry on oeis.org

8, 6, 0, 8, 1, 7, 8, 8, 1, 9, 2, 8, 0, 0, 8, 0, 7, 7, 7, 7, 8, 8, 6, 6, 4, 6, 5, 9, 0, 1, 2, 1, 0, 8, 5, 0, 8, 4, 9, 1, 4, 1, 3, 6, 5, 0, 8, 0, 5, 7, 9, 3, 0, 9, 5, 1, 4, 0, 1, 2, 2, 0, 7, 9, 8, 5, 1, 2, 2, 4, 3, 0, 9, 2, 2, 2, 6, 3, 9, 2, 2, 7, 2, 2, 9, 8, 0
Offset: 0

Views

Author

Amiram Eldar, May 07 2021

Keywords

Comments

This constant is a transcendental number (Adhikari et al., 2001).
A similar series is Sum_{k>=1} F(k)/2^k = 2.
The corresponding series with Lucas numbers (A000032) is Sum_{k>=1} L(k)/(k*2^k) = 2*log(2) (A016627).
In general, for m>=2, Sum_{k>=1} F(k)/(k*m^k) = log(1 - 2*sqrt(5)/(1 + sqrt(5) - 2*m)) / sqrt(5) and Sum_{k>=1} L(k)/(k*m^k) = log(m^2 / (m^2 - m - 1)). - Vaclav Kotesovec, May 08 2021

Examples

			0.86081788192800807777886646590121085084914136508057...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[Fibonacci[n]/n/2^n, {n, 1, Infinity}], 10, 100][[1]]
  • PARI
    suminf(k=1, fibonacci(k)/(k*2^k)) \\ Michel Marcus, May 07 2021

Formula

Equals Sum_{k>=0} (-1)^k/A002457(k).
Equals 4*log(phi)/sqrt(5) = 4*arcsinh(1/2)/sqrt(5) = arccosh(7/2)/sqrt(5) = 4*A002390/A002163.
Equals Integral_{x>=2} 1/(x^2 - x - 1) dx.

A352485 Decimal expansion of the probability that when a unit interval is broken at two points uniformly and independently chosen at random along its length the lengths of the resulting three intervals are the altitudes of a triangle.

Original entry on oeis.org

2, 3, 2, 9, 8, 1, 4, 5, 8, 3, 1, 3, 6, 0, 9, 6, 9, 3, 3, 3, 4, 6, 3, 9, 7, 5, 9, 0, 8, 1, 4, 5, 3, 0, 2, 1, 0, 1, 8, 9, 6, 9, 6, 3, 8, 0, 9, 6, 6, 9, 5, 1, 7, 1, 4, 1, 6, 8, 1, 4, 6, 4, 9, 5, 8, 2, 1, 4, 6, 9, 1, 7, 1, 0, 6, 7, 1, 6, 7, 0, 7, 2, 6, 7, 5, 7, 6, 6, 3, 5, 2, 7, 3, 3, 2, 7, 8, 9, 2, 9, 7, 5, 1, 9, 3
Offset: 0

Views

Author

Amiram Eldar, Mar 18 2022

Keywords

Examples

			0.23298145831360969333463975908145302101896963809669...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[24*Sqrt[5]*Log[GoldenRatio]/25 - 4/5, 10, 100][[1]]

Formula

Equals 12*sqrt(5)*log((3+sqrt(5))/2)/25 - 4/5.
Equals 24*sqrt(5)*log(phi)/25 - 4/5, where phi is the golden ratio (A001622).

A384238 Decimal expansion of sqrt(5) - log(phi) - 1, where phi is the golden ratio.

Original entry on oeis.org

7, 5, 4, 8, 5, 6, 1, 5, 2, 4, 4, 0, 1, 8, 6, 2, 4, 8, 9, 1, 1, 4, 1, 4, 7, 5, 5, 3, 0, 6, 9, 0, 7, 8, 1, 2, 3, 0, 5, 4, 3, 4, 0, 2, 5, 2, 2, 5, 8, 6, 5, 2, 0, 4, 6, 0, 9, 8, 7, 9, 0, 7, 6, 5, 7, 0, 3, 5, 7, 0, 5, 8, 0, 2, 9, 5, 8, 3, 1, 2, 5, 0, 0, 2, 4, 0, 4
Offset: 0

Views

Author

Kritsada Moomuang, May 22 2025

Keywords

Examples

			0.75485615244018624891...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[5] - Log[GoldenRatio] - 1, 10, 100, -1][[1]]

Formula

Equals Integral_{x=0..1} 2/(1 + sqrt(1 + 4*x)) dx.
Equals Integral_{x=0..1} 1/(1 + x/(1 + x/(1 + x/...))) dx.
Equals A002163 - A002390 - 1.
Previous Showing 41-50 of 73 results. Next