cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A083912 Number of divisors of n that are congruent to 2 modulo 10.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[Mod[d, 10] == 2, 1, 0], {d, Divisors[n]}];
    Array[a, 105] (* Jean-François Alcover, Dec 02 2021 *)
    a[n_] := DivisorSum[n, 1 &, Mod[#, 10] == 2 &]; Array[a, 100] (* Amiram Eldar, Dec 30 2023 *)
  • PARI
    A083912(n) = sumdiv(n,d,2==(d%10)); \\ Antti Karttunen, Jan 22 2020

Formula

a(n) = A000005(n) - A083910(n) - A083911(n) - A083913(n) - A083914(n) - A083915(n) - A083916(n) - A083917(n) - A083918(n) - A083919(n).
G.f.: Sum_{k>=1} x^(2*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = gamma(2,10) - (1 - gamma)/10 = 0.256367..., gamma(2,10) = -(psi(1/5) + log(10))/10 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Dec 30 2023

A083914 Number of divisors of n that are congruent to 4 modulo 10.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A000005(n) - A083910(n) - A083911(n) - A083912(n) - A083913(n) - A083915(n) - A083916(n) - A083917(n) - A083918(n) - A083919(n).
G.f.: Sum_{k>=1} x^(4*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = gamma(4,10) - (1 - gamma)/10 = -0.0163984..., gamma(4,10) = -(psi(2/5) + log(10))/10 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Dec 30 2023

A083915 Number of divisors of n that are congruent to 5 modulo 10.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A000005(n) - A083910(n) - A083911(n) - A083912(n) - A083913(n) - A083914(n) - A083916(n) - A083917(n) - A083918(n) - A083919(n).
G.f.: Sum_{k>=1} x^(5*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,10) - (1 - gamma)/10 = 0.0761859..., gamma(5,10) = -(psi(1/2) + log(10))/10 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Dec 30 2023

A083916 Number of divisors of n that are congruent to 6 modulo 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A000005(n) - A083910(n) - A083911(n) - A083912(n) - A083913(n) - A083914(n) - A083915(n) - A083917(n) - A083918(n) - A083919(n).
G.f.: Sum_{k>=1} x^(6*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = gamma(6,10) - (1 - gamma)/10 = -0.118475..., gamma(6,10) = -(psi(3/5) + log(10))/10 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Dec 30 2023

A083918 Number of divisors of n that are congruent to 8 modulo 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A000005(n) - A083910(n) - A083911(n) - A083912(n) - A083913(n) - A083914(n) - A083915(n) - A083916(n) - A083917(n) - A083919(n).
G.f.: Sum_{k>=1} x^(8*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = gamma(8,10) - (1 - gamma)/10 = -0.176036..., gamma(8,10) = -(psi(4/5) + log(10))/10 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Dec 30 2023

A053511 Decimal expansion of log_10 (Pi).

Original entry on oeis.org

4, 9, 7, 1, 4, 9, 8, 7, 2, 6, 9, 4, 1, 3, 3, 8, 5, 4, 3, 5, 1, 2, 6, 8, 2, 8, 8, 2, 9, 0, 8, 9, 8, 8, 7, 3, 6, 5, 1, 6, 7, 8, 3, 2, 4, 3, 8, 0, 4, 4, 2, 4, 4, 6, 1, 3, 4, 0, 5, 3, 4, 9, 9, 9, 2, 4, 9, 4, 7, 1, 1, 2, 0, 8, 9, 5, 5, 2, 6, 7, 4, 6, 5, 5, 5, 4, 7, 3, 8, 6, 4, 6, 4, 2, 9, 1, 2, 2, 2, 3, 6, 9, 4, 2, 8
Offset: 0

Views

Author

Hsu, Po-Wei (Benny) (arsene_lupin(AT)intekom.co.za), Jan 14 2000

Keywords

Examples

			0.49714987269413385435126828829089887365167832438...
		

Crossrefs

Cf. A053510 (log(Pi)), A002392 (log(10)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Log(10, Pi(R)); // G. C. Greubel, May 15 2019
    
  • Mathematica
    RealDigits[Log[10, Pi], 10, 105][[1]] (* Alonso del Arte, Sep 05 2012 *)
  • PARI
    log(Pi)/log(10) \\ Charles R Greathouse IV, Sep 05 2012
    
  • Sage
    numerical_approx(log(pi, 10), digits=100) # G. C. Greubel, May 15 2019

Extensions

More terms from James Sellers, Jan 20 2000

A016643 Decimal expansion of log(20).

Original entry on oeis.org

2, 9, 9, 5, 7, 3, 2, 2, 7, 3, 5, 5, 3, 9, 9, 0, 9, 9, 3, 4, 3, 5, 2, 2, 3, 5, 7, 6, 1, 4, 2, 5, 4, 0, 7, 7, 5, 6, 7, 6, 6, 0, 1, 6, 2, 2, 9, 8, 9, 0, 2, 8, 2, 3, 0, 1, 5, 4, 0, 0, 7, 9, 1, 0, 4, 6, 0, 9, 6, 6, 2, 3, 1, 6, 4, 7, 0, 4, 7, 1, 9, 5, 8, 4, 1, 8, 6, 0, 5, 3, 2, 0, 8, 6, 0, 1, 6, 9, 8, 5, 8, 8, 3, 9, 6
Offset: 1

Views

Author

Keywords

Examples

			2.995732273553990993435223576142540775676601622989028230154007910460966...
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016448 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[20], 10, 150][[1]] (* Stefan Steinerberger, Apr 09 2006 *)
  • PARI
    default(realprecision, 20080); x=log(20); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016643.txt", n, " ", d)); \\ Harry J. Smith, May 17 2009, corrected May 20 2009

Formula

Equals A002162 + A002392. - R. J. Mathar, Aug 13 2024

Extensions

More terms from Stefan Steinerberger, Apr 09 2006

A016738 Continued fraction for log(10).

Original entry on oeis.org

2, 3, 3, 3, 1, 1, 3, 6, 3, 3, 1, 4, 2, 1, 2, 1, 3, 26, 5, 1, 23, 1, 1, 1, 2, 2, 3, 19, 1, 3, 716, 1, 2, 1, 1, 2, 2, 1, 22, 1, 17, 4, 1, 13, 7, 3, 5, 1, 1, 1, 1, 1, 7, 7, 1, 1, 4, 2, 1, 15, 1, 4, 2, 4, 1, 28, 1, 1, 2, 4, 1, 3, 6, 1, 9, 2, 4, 3, 1, 4, 3, 4, 1, 24, 16, 4, 6, 1, 33, 20, 9, 1, 1, 7, 24, 4, 2
Offset: 0

Views

Author

Keywords

Examples

			2.302585092994045684017991454... = 2 + 1/(3 + 1/(3 + 1/(3 + 1/(1 + ...)))). - _Harry J. Smith_, May 16 2009
		

Crossrefs

Cf. A002392 (decimal expansion).

Programs

  • Magma
    ContinuedFraction(Log(10)); // G. C. Greubel, Sep 15 2018
  • Mathematica
    ContinuedFraction[ Log[10], 75 ]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(log(10)); for (n=1, 20000, write("b016738.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 16 2009
    

Extensions

More terms from Robert G. Wilson v, Dec 07 2000
Offset changed by Andrew Howroyd, Jul 10 2024

A059545 Beatty sequence for log(10).

Original entry on oeis.org

2, 4, 6, 9, 11, 13, 16, 18, 20, 23, 25, 27, 29, 32, 34, 36, 39, 41, 43, 46, 48, 50, 52, 55, 57, 59, 62, 64, 66, 69, 71, 73, 75, 78, 80, 82, 85, 87, 89, 92, 94, 96, 99, 101, 103, 105, 108, 110, 112, 115, 117, 119, 122, 124, 126, 128, 131, 133, 135, 138, 140, 142, 145, 147
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059546.
Cf. A002392 (log(10)).

Programs

  • Mathematica
    Table[Floor[Log[10]n], {n, 1, 100}] (* Stefan Steinerberger, May 09 2006 *)
  • PARI
    { default(realprecision, 100); b=log(10); for (n = 1, 2000, write("b059545.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = floor(n*log(10)). - Stefan Steinerberger, May 09 2006

A059550 Beatty sequence for 1 + log(10).

Original entry on oeis.org

3, 6, 9, 13, 16, 19, 23, 26, 29, 33, 36, 39, 42, 46, 49, 52, 56, 59, 62, 66, 69, 72, 75, 79, 82, 85, 89, 92, 95, 99, 102, 105, 108, 112, 115, 118, 122, 125, 128, 132, 135, 138, 142, 145, 148, 151, 155, 158, 161, 165, 168, 171, 175, 178, 181, 184, 188, 191, 194, 198, 201, 204, 208, 211, 214, 217, 221, 224, 227, 231, 234, 237, 241, 244, 247, 250, 254, 257
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059549. Differs from A080081 at 76th term.
Cf. A002392.

Programs

  • Mathematica
    Floor[Range[100]*(1 + Log[10])] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=1 + log(10); for (n = 1, 2000, write("b059550.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = floor(n*(1 + A002392)). - Paolo Xausa, Jul 05 2024
Previous Showing 11-20 of 43 results. Next