cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A016653 Decimal expansion of log(30).

Original entry on oeis.org

3, 4, 0, 1, 1, 9, 7, 3, 8, 1, 6, 6, 2, 1, 5, 5, 3, 7, 5, 4, 1, 3, 2, 3, 6, 6, 9, 1, 6, 0, 6, 8, 8, 9, 9, 1, 2, 2, 4, 8, 5, 9, 2, 0, 4, 6, 4, 5, 1, 5, 2, 2, 4, 2, 7, 7, 6, 8, 0, 2, 2, 2, 3, 4, 6, 0, 5, 0, 6, 6, 9, 0, 2, 8, 9, 5, 9, 6, 1, 4, 4, 7, 1, 0, 9, 6, 1, 2, 9, 5, 9, 9, 0, 3, 3, 3, 0, 3, 8
Offset: 1

Views

Author

Keywords

Examples

			3.401197381662155375413236691606889912248592046451522427768022234605066....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016458 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[30], 10, 120][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
  • PARI
    default(realprecision, 20080); x=log(30); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016653.txt", n, " ", d)); \\ Harry J. Smith, May 20 2009

Formula

Equals A002391 + A002392. - R. J. Mathar, Jul 22 2025

A016723 Decimal expansion of log(100).

Original entry on oeis.org

4, 6, 0, 5, 1, 7, 0, 1, 8, 5, 9, 8, 8, 0, 9, 1, 3, 6, 8, 0, 3, 5, 9, 8, 2, 9, 0, 9, 3, 6, 8, 7, 2, 8, 4, 1, 5, 2, 0, 2, 2, 0, 2, 9, 7, 7, 2, 5, 7, 5, 4, 5, 9, 5, 2, 0, 6, 6, 6, 5, 5, 8, 0, 1, 9, 3, 5, 1, 4, 5, 2, 1, 9, 3, 5, 4, 7, 0, 4, 9, 6, 0, 4, 7, 1, 9, 9, 4, 4, 1, 0, 1, 7, 9, 1, 9, 6, 5, 9
Offset: 1

Views

Author

Keywords

Examples

			4.605170185988091368035982909368728415202202977257545952066655801935145....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016528 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 2*Log(10); // G. C. Greubel, Sep 15 2018
  • Mathematica
    RealDigits[2*Log[10], 10,100][[1]] (* G. C. Greubel, Sep 15 2018 *)
  • PARI
    default(realprecision, 20080); x=log(100); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016723.txt", n, " ", d)); \\ Harry J. Smith, May 25 2009
    

Formula

Equals 2*A002392.

A059546 Beatty sequence for log(10)/(log(10)-1).

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 21, 22, 24, 26, 28, 30, 31, 33, 35, 37, 38, 40, 42, 44, 45, 47, 49, 51, 53, 54, 56, 58, 60, 61, 63, 65, 67, 68, 70, 72, 74, 76, 77, 79, 81, 83, 84, 86, 88, 90, 91, 93, 95, 97, 98, 100, 102, 104, 106, 107, 109, 111, 113, 114, 116
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059545.
Cf. A002392.

Programs

  • Mathematica
    Floor[Range[100]*(1 + 1/(Log[10] - 1))] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=log(10)/(log(10) - 1); for (n = 1, 2000, write("b059546.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = floor(n*log(10)/(log(10) - 1)). - Michel Marcus, Jan 04 2015

A062542 Decimal expansion of the continued fraction constant (base 10).

Original entry on oeis.org

1, 0, 3, 0, 6, 4, 0, 8, 3, 4, 1, 0, 0, 7, 1, 2, 9, 3, 5, 8, 8, 1, 7, 7, 6, 0, 9, 4, 1, 1, 6, 9, 3, 6, 8, 4, 0, 9, 2, 5, 9, 2, 0, 3, 1, 1, 1, 2, 0, 7, 2, 6, 2, 8, 1, 7, 7, 0, 0, 6, 0, 9, 5, 2, 2, 3, 4, 9, 5, 4, 4, 2, 8, 0, 0, 4, 7, 9, 9, 7, 6, 7, 5, 1, 8, 3, 6, 0, 8, 0, 8, 3, 9, 5, 6, 5, 8, 6, 5, 4, 7, 6, 2, 6, 3
Offset: 1

Views

Author

Jason Earls, Jun 25 2001

Keywords

Comments

"(By strange coincidence, the information in a typical continued fraction term is very nearly one decimal digit - actually pi^2/(6 (ln 2) (ln 10)) = 1.0306.) R. W. Gosper. Math-Fun list, Apr 9 1998. This constant is the average number of decimal digits necessary to have the equivalent continued fraction representations of a number in base 10. In other words if you have N decimal digits it will give you N/C = N/1.0306 valid partial quotients in average." - Simon Plouffe

Examples

			1.03064083410071293588177609411693684092592031112...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8 Khintchine-Lévy constants, p. 60.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/(6Log[2]Log[10]),10,120][[1]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    Pi^2/(6*log(2)*log(10)) \\ Stefano Spezia, Nov 16 2024

Formula

Equals Pi^2/(6 (log 2) (log 10)).
Equals A013661/(A002162*A002392). - Stefano Spezia, Nov 16 2024

A228240 Integer lengths of log(10)-primes.

Original entry on oeis.org

1, 2, 40, 242, 842, 1541, 75067
Offset: 1

Views

Author

Eric W. Weisstein, Aug 17 2013

Keywords

Comments

Next term > 76902. - Eric W. Weisstein, Oct 12 2015

Examples

			log(10) = 2.302585093..., so
a(1) = 1 (1-digit number 2 is prime),
a(2) = 2 (2-digit number 23 is a prime),
a(3) = 40 (40-digit number 2302585092994045684017991454684364207601 is prime).
		

Crossrefs

Cf. A228241 (log(10)-primes).
Cf. A002392 (decimal digits of log(10)).

Programs

  • Mathematica
    Module[{nn=2000,lg10},lg10=RealDigits[Log[10],10,nn][[1]];IntegerLength/@ Select[Table[FromDigits[Take[lg10,n]],{n,nn}],PrimeQ]] (* Harvey P. Dale, Jul 16 2015 *)

Formula

a(n) = IntegerLength(A228241(n)).

Extensions

a(7) from Eric W. Weisstein, Oct 12 2015

A228241 Log 10-primes: primes in the initial decimal digits of log(10).

Original entry on oeis.org

2, 23, 2302585092994045684017991454684364207601
Offset: 1

Views

Author

Eric W. Weisstein, Aug 17 2013

Keywords

Comments

The next term (a(4)) has 242 digits. - Harvey P. Dale, Sep 13 2021

Crossrefs

Cf. A228240 (integer lengths of log(10)-primes).
Cf. A002392 (decimal expansion of log(10)).

Programs

  • Mathematica
    Module[{nn=500,l10},l10=RealDigits[Log[10],10,nn][[1]];Select[ Table[ FromDigits[ Take[l10,n]],{n,nn}],PrimeQ]] (* Harvey P. Dale, Sep 13 2021 *)

A059182 Engel expansion of log(10) = 2.30259...

Original entry on oeis.org

1, 1, 4, 5, 20, 30, 48, 74, 265, 818, 897, 2027, 5107, 6846, 13049, 236586, 364437, 643493, 1144424, 7294777, 49484843, 51161394, 76008087, 202870914, 391981014, 11731070977, 79069971960, 415100034571, 1212266245583
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.
  • .

Crossrefs

Cf. A002392.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]]; EngelExp[N[Log[10], 7!], 50] (* modified by G. C. Greubel, Dec 26 2016 *)

A111769 Decimal expansion of abs(log_10(tan 1 degree)).

Original entry on oeis.org

1, 7, 5, 8, 0, 7, 8, 5, 3, 1, 3, 8, 6, 3, 7, 2, 2, 5, 4, 8, 8, 5, 3, 5, 5, 1, 9, 0, 3, 7, 0, 6, 4, 2, 0, 2, 0, 9, 7, 8, 4, 4, 7, 9, 8, 6, 4, 5, 0, 8, 7, 0, 7, 4, 6, 4, 2, 1, 5, 9, 3, 7, 5, 0, 6, 6, 5, 9, 8, 3, 3, 0, 4, 2, 4, 0, 6, 7, 0, 5, 4, 9, 2, 5, 5, 9, 9, 0, 5, 4, 7, 9, 0, 9, 9, 8, 6, 5, 6, 7, 7, 5, 3, 4, 7
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 21 2005

Keywords

Examples

			1.75807853138637225488535519037064202097844798645087074642159375066
598330424067054925599054790998656775347490626861719117
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Abs[Log[10,Tan[1 Degree]]],10,120][[1]] (* Harvey P. Dale, Aug 21 2016 *)

Formula

Equals A111767/A002392 - R. J. Mathar, Apr 23 2009

Extensions

Clarified base of logarithm in definition - R. J. Mathar, Apr 23 2009

A117028 Decimal expansion of abs(log_10(sine of 1 radian)).

Original entry on oeis.org

0, 7, 4, 9, 6, 0, 8, 5, 4, 5, 6, 0, 4, 9, 5, 5, 0, 6, 1, 3, 8, 3, 8, 9, 4, 5, 4, 2, 5, 9, 4, 0, 4, 6, 9, 6, 5, 9, 4, 8, 7, 4, 5, 4, 0, 4, 6, 5, 3, 5, 8, 7, 3, 3, 5, 4, 1, 5, 5, 6, 7, 5, 7, 1, 2, 4, 2, 2, 6, 9, 7, 6, 6, 2, 2, 1, 3, 3, 1, 3, 2, 3, 4, 3, 0, 3, 6, 4, 8, 9, 8, 8, 7, 9, 6, 7, 9, 4, 2, 7, 9, 3, 6, 1, 3
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 15 2006

Keywords

Examples

			0.07496085456049550613838945425940469659487454046535873354155675712422
		

Crossrefs

Formula

Equals A117029/A002392. - R. J. Mathar, Apr 23 2009

Extensions

Clarified base of logarithm in definition - R. J. Mathar, Apr 23 2009

A197071 Decimal expansion of Pi/log(10).

Original entry on oeis.org

1, 3, 6, 4, 3, 7, 6, 3, 5, 3, 8, 4, 1, 8, 4, 1, 3, 4, 7, 4, 8, 5, 7, 8, 3, 6, 2, 5, 4, 3, 1, 3, 5, 5, 7, 7, 0, 2, 1, 0, 1, 2, 7, 4, 8, 3, 7, 2, 3, 9, 2, 5, 3, 9, 9, 9, 0, 0, 8, 5, 4, 7, 3, 1, 9, 9, 5, 9, 2, 2, 8, 1, 7, 3, 6, 0, 2, 6, 2, 1, 6, 5, 2, 6, 6, 9, 3, 4, 9, 4, 2, 0, 6, 0, 4, 7, 6, 7, 2, 7
Offset: 1

Views

Author

Philippe Deléham, Oct 09 2011

Keywords

Comments

Pi/log(10) = 1.364376353841841...

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi/Log[10], 10, 101][[1]]

Extensions

a(52) corrected and more terms from Georg Fischer, Apr 04 2020
Previous Showing 21-30 of 43 results. Next