cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A095871 Triangle read by rows: T(n,k)=(n+1)*(3*(n+1)-1)/2-k*(3*k-1)/2.

Original entry on oeis.org

1, 5, 4, 12, 11, 7, 22, 21, 17, 10, 35, 34, 30, 23, 13, 51, 50, 46, 39, 29, 16, 70, 69, 65, 58, 48, 35, 19, 92, 91, 87, 80, 70, 57, 41, 22, 117, 116, 112, 105, 95, 82, 66, 47, 25, 145, 144, 140, 133, 123, 110, 94, 75, 53, 28, 176, 175, 171, 164, 154, 141, 125, 106, 84, 59
Offset: 1

Views

Author

Gary W. Adamson, Jun 10 2004, Jul 28 2008

Keywords

Comments

Octagonal pyramidal number triangle, read by rows.
The triangle is generated from the product B*A of the infinite lower triangular matrices A =
1 0 0 0...
1 1 0 0...
1 1 1 0...
1 1 1 1...
and B =
1 0 0 0...
1 4 0 0...
1 4 7 0...
1 4 7 10...
T(n,0)=A000326(n+1)
T(n,2)=A059845(n+2)
T(n,n)=3*n+1

Examples

			Column 3 = A059845: 7, 17, 30, 46, 65...; while rightmost terms of rows are 1, 4, 7, 10...
First few rows of the triangle =
  1;
  5, 4;
  12, 11, 7;
  22, 21, 17, 10;
  35, 34, 30, 23, 13;
  51, 50, 46, 39, 29, 16;
  70, 69, 65, 58, 48, 35, 19;
  ...
		

Crossrefs

Cf. A095872, A000326, A059845, A002414 (row sums)

Programs

  • PARI
    T(n, k) = local(i); if(k>n,0,(n+1)*(3*(n+1)-1)/2-k*(3*k-1)/2)
    for(i=0,10, for(j=0,i,print1(T(i,j),", "));print()) \\ Lambert Klasen

Formula

Triangle read by rows, T(n,k) = sum {j=k..n} 3*j - 2 = A000012 * ((3*j - 2) * 0^(n-k)) * A000012; 1<=k<=n. E.g. T(5,3) = 30 = (7 + 10 + 13).

Extensions

More terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 21 2005

A095872 Square of the lower triangular matrix T[i,j] = 3j-2 for 1<=j<=i, read by rows.

Original entry on oeis.org

1, 5, 16, 12, 44, 49, 22, 84, 119, 100, 35, 136, 210, 230, 169, 51, 200, 322, 390, 377, 256, 70, 176, 455, 580, 624, 560, 361, 70, 276, 455, 580, 624, 560, 361, 92, 364, 609, 800, 910, 912, 779, 484, 117, 464, 784, 1050, 1235, 1312, 1254, 1034, 625, 145, 576, 980, 1330, 1599
Offset: 1

Views

Author

Gary W. Adamson, Jun 10 2004

Keywords

Comments

Arranged by flush left columns (k=1,2,3...), (k=1) column = A000326, the pentagonal numbers (1, 5, 12, 22, 35...). The Octagonal pyramidal number triangle of A095871 is generated from A095872 by dividing the k-th row by the n-th term in the series 1, 4, 7, 10...(k starting with 1). Dividing the 3rd column of A095872 (49, 119, 210, 322, 455...) by 7 generates A059845: 7, 17, 30, 46, 65... Rightmost terms of each row of A095872 are A016778 (1, 16, 49, 100, 169...); i.e. squares of 1, 4, 7, 10... Row sums of A095872 are 1, 21, 105, 325, 780, 1596, 2926... Row sums of A095871 are the octagonal pyramidal numbers, A002414: 1, 9, 30, 70, 135, 231, 364...
[Editor's note: OEIS' "TABL" format (fmt=2) rather displays the transposed matrix as upper triangular matrix.]

Examples

			Let M = the infinite lower triangular matrix in the format exemplified by a 3rd order matrix: [1 0 0 / 1 4 0 / 1 4 7]: i.e. for the n-th order matrix, each row has n terms in the series 1, 4, 7, 10... with the rest of the spaces filled in with zeros. Square the matrix and delete the zeros; then read by rows.
[1 0 0 / 1 4 0 / 1 4 7]^2 = [1 0 0 / 5 16 0 / 12 44 49]; then delete the zeros and read by rows: 1, 5, 16, 12, 44, 49...
		

Crossrefs

Programs

  • PARI
    A095802(n)={ my( r=sqrtint(2*n)+1, T=matrix(r,r,i,j,if(j>=i,3*j-2))^2); concat(vector(#T,i,vecextract(T[,i],2^i-1)))[n] } \\ M. F. Hasler, Apr 18 2009

Formula

a(k(k+1)/2) = (3k-2)^2 (diagonal elements: squares of the initial series), a(k(k-1)/2+1) = A000326(k) (1st column: pentagonal numbers). - M. F. Hasler, Apr 18 2009

Extensions

Edited and extended by M. F. Hasler, Apr 18 2009

A104728 Triangle T(n,k) = (k-1-n)*(k-2-n)*(k-2+2*n)/2 read by rows, 1<=k<=n.

Original entry on oeis.org

1, 9, 4, 30, 18, 7, 70, 48, 27, 10, 135, 100, 66, 36, 13, 231, 180, 130, 84, 45, 16, 364, 294, 225, 160, 102, 54, 19, 540, 448, 357, 270, 190, 120, 63, 22, 765, 648, 532, 420, 315, 220, 138, 72, 25, 1045, 900, 756, 616, 483, 360, 250, 156, 81, 28, 1386, 1210, 1035, 864, 700, 546, 405, 280, 174, 90, 31
Offset: 1

Views

Author

Gary W. Adamson, Mar 20 2005

Keywords

Comments

The triangle is defined as the matrix product A * B, A = [1; 1, 4; 1, 4, 7;...]; B = [1; 2, 1; 3, 2, 1;...]; both infinite lower triangular matrices with the rest of the terms zeros.

Examples

			The first few rows of the triangle are:
1;
9,    4;
30,   18,   7;
70,   48,   27,   10;
135,  100,  66,   36,   13;
231,  180,  130,  84,   45,  16;
364,  294,  225,  160,  102, 54,  19;
540,  448,  357,  270,  190, 120, 63,  22;
765,  648,  532,  420,  315, 220, 138, 72,  25;
1045, 900,  756,  616,  483, 360, 250, 156, 81,  28;
1386, 1210, 1035, 864,  700, 546, 405, 280, 174, 90,  31;
1794, 1584, 1375, 1170, 972, 784, 609, 450, 310, 192, 99, 34, etc.
		

Crossrefs

Cf. A051798 (row sums), A007586, A002414 (column 1).

Programs

  • Maple
    A104728 := proc(n)
            (k-1-n)*(k-2-n)*(k-2+2*n)/2 ;
    end proc:
    seq(seq(A104728(n,k),k=1..n),n=1..14) ; # R. J. Mathar, Nov 07 2011
  • Mathematica
    Table[(k-1-n)(k-2-n)(k-2+2n)/2,{n,20},{k,n}]//Flatten (* Harvey P. Dale, Dec 25 2018 *)

Extensions

Name contributed by R. J. Mathar, Nov 07 2011

A136526 Coefficients polynomials B(x, n) = ((1 + a + b)*x - c)*B(x, n-1) - a*b*B(x, n-2) with a = 3, b = 2, and c = 0.

Original entry on oeis.org

1, 0, 1, -6, 0, 6, 0, -42, 0, 36, 36, 0, -288, 0, 216, 0, 468, 0, -1944, 0, 1296, -216, 0, 4536, 0, -12960, 0, 7776, 0, -4104, 0, 38880, 0, -85536, 0, 46656, 1296, 0, -51840, 0, 311040, 0, -559872, 0, 279936, 0, 32400, 0, -544320, 0, 2379456, 0, -3639168, 0, 1679616
Offset: 0

Views

Author

Roger L. Bagula, Mar 23 2008

Keywords

Examples

			Triangle begins as:
     1;
     0,     1;
    -6,     0,      6;
     0,   -42,      0,    36;
    36,     0,   -288,     0,    216;
     0,   468,      0, -1944,      0,   1296;
  -216,     0,   4536,     0, -12960,      0,    7776;
     0, -4104,      0, 38880,      0, -85536,       0, 46656;
  1296,     0, -51840,     0, 311040,      0, -559872,     0, 279936;
		

References

  • Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, page 93

Crossrefs

Programs

  • Magma
    f:= func< n,k | k eq 0 select (-1)^Floor(n/2) else (-1)^Floor((n-k)/2)*6^Floor((k-1)/2)*(1/k)*(6*Floor((n-k)/2) +k)*Binomial(Floor((n-k)/2) +k-1, k-1) >;
    A136526:= func< n,k | ((n+k+1) mod 2)*6^Floor(n/2)*f(n,k) >;
    [A136526(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 22 2022
    
  • Mathematica
    (* First program *)
    a= (b+1)/(b-1); c=0; b=2;
    B[x_, n_]:= B[x, n]= If[n<2, x^n, ((1+a+b)*x -c)*B[x, n-1] -a*b*B[x, n-2]];
    Table[CoefficientList[B[x,n], x], {n,0,10}]//Flatten
    (* Second program *)
    B[x_, n_]:= 6^(n/2)*(ChebyshevU[n, Sqrt[3/2]*x] -(5*x/Sqrt[6])*ChebyshevU[n-1, Sqrt[3/2]*x]);
    Table[CoefficientList[B[x, n], x]/6^Floor[n/2], {n,0,16}]//Flatten (* G. C. Greubel, Sep 22 2022 *)
  • SageMath
    def f(n,k):
        if (k==0): return (-1)^(n//2)
        else: return (-1)^((n-k)//2)*6^((k-1)//2)*(1/k)*(6*((n-k)//2) + k)*binomial(((n-k)//2) +k-1, k-1)
    def A136526(n,k): return ((n+k+1)%2)*6^(n//2)*f(n,k)
    flatten([[A136526(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 22 2022

Formula

T(n, k) = coefficients of the polynomials defined by B(x, n) = ((1 + a + b)*x - c)*B(x, n - 1) - a*b*B(x, n - 2) with B(x, 0) = 1, B(x, 1) = x, a = 3, b = 2, and c = 0.
From G. C. Greubel, Sep 22 2022: (Start)
T(n, k) = coefficients of the polynomials defined by B(x, n) = 6^(n/2)*(ChebyshevU(n, sqrt(3/2)*x) - (5*x/sqrt(6))*ChebyshevU(n-1, sqrt(3/2)*x)).
T(n, k) = (1/2)*(1+(-1)^(n+k))*6^floor(n/2)*f(n, k), where f(n, k) = (-1)^floor((n -k)/2)*6^floor((k-1)/2)*(1/k)*(6*floor((n-k)/2) + k)*binomial(floor((n-k)/2) + k -1, k-1), for k >= 1, and (-1)^floor(n/2) for k = 0.
T(n, 0) = (1/2)*(1+(-1)^n)*(-6)^floor(n/2).
T(n, 1) = (1/2)*(1-(-1)^n)*(-6)^floor((n-1)/2)*A016921(floor((n-1)/2)), n >= 1.
T(n, 2) = (1/2)*(1+(-1)^n)*(-1)^(1+Floor((n+1)/2))*6^floor((n+1)/2)*A000567(floor( (n+1)/2)), n >= 2.
T(n, 3) = (1/2)*(1-(-1)^n)*(-6)^floor((n+1)/2)*A002414(floor((n-1)/2)), n >= 3.
T(n, 4) = (3/2)*(1+(-1)^n)*(-6)^floor((n+1)/2)*A002419(floor((n-1)/2)), n >= 4.
T(n, 5) = 18*(1-(-1)^n)*(-6)^floor((n-1)/2)*A051843(floor((n-3)/2)), n >= 5.
T(n, n) = 6^(n-1) + (5/6)*[n=0].
T(n, n-2) = -6*A081106(n-2), n >= 2.
Sum_{k=0..n} T(n, k) = -6*A030192(n-3), n>= 0.
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] - 5*[n=2].
G.f.: (1 - 5*x*y)/(1 - 6*x*y + 6*y^2). (End)

Extensions

Edited by G. C. Greubel, Sep 22 2022

A273325 Number of endofunctions on [2n] such that the minimal cardinality of the nonempty preimages equals n.

Original entry on oeis.org

1, 2, 36, 300, 1960, 11340, 60984, 312312, 1544400, 7438860, 35103640, 162954792, 746347056, 3380195000, 15164074800, 67476121200, 298135873440, 1309153089420, 5717335239000, 24847720451400, 107520292479600, 463440029892840, 1990477619679120, 8521600803066000
Offset: 0

Views

Author

Alois P. Heinz, May 20 2016

Keywords

Comments

a(0) = 1 by convention.

Examples

			a(1) = 2: 12, 21.
a(2) = 36: 1122, 1133, 1144, 1212, 1221, 1313, 1331, 1414, 1441, 2112, 2121, 2211, 2233, 2244, 2323, 2332, 2424, 2442, 3113, 3131, 3223, 3232, 3311, 3322, 3344, 3434, 3443, 4114, 4141, 4224, 4242, 4334, 4343, 4411, 4422, 4433.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 2^n,
           2*(2*n-1)^2*a(n-1)/((n-1)*(2*n-3)))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := (2*n^3 + n^2 - n) * CatalanNumber[n]; a[0] = 1; Array[a, 30, 0] (* Amiram Eldar, Mar 12 2023 *)

Formula

G.f.: 1+(8*x+1)*2*x/(1-4*x)^(5/2).
a(n) = C(2*n,n)*C(2*n,2) for n>0, a(0)=1.
a(n) = 2*C(2*(n-1),n-1)*(2*n-1)^2, a(0)=1.
a(n) = 2*(2*n-1)^2*a(n-1)/((n-1)*(2*n-3)) for n>1, a(n) = 2^n for n=0..1.
a(n) = A245687(2n,n).
a(n) = A000108(n)*A213820(n) = 2*A000108(n)*A002414(n) for n>0, a(0)=1.
Sum_{n>=0} 1/a(n) = 1 - log(sqrt(3)+2)*Pi/6 + 4*G/3, where G is Catalan's constant (A006752). - Amiram Eldar, Mar 12 2023

A378361 Octagonal indices of numbers that are both octagonal and octagonal pyramidal.

Original entry on oeis.org

0, 1, 19, 45, 6413415, 16068720
Offset: 1

Views

Author

Kelvin Voskuijl, Nov 23 2024

Keywords

Examples

			19 is a term because the 19th octagonal number (1045) is also the 10th octagonal pyramidal number.
		

Crossrefs

Cf. A000567 (octagonal numbers), A002414 (octagonal pyramidal numbers).
Cf. A344376.

A125235 Triangle with the partial column sums of the octagonal numbers.

Original entry on oeis.org

1, 8, 1, 21, 9, 1, 40, 30, 10, 1, 65, 70, 40, 11, 1, 96, 135, 110, 51, 12, 1, 133, 231, 245, 161, 63, 13, 1, 176, 364, 476, 406, 224, 76, 14, 1, 225, 540, 840, 882, 630, 300, 90, 15, 1, 280, 765, 1380, 1722, 1512, 930, 390, 105, 16, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 24 2006

Keywords

Comments

"Partial column sums" means the octagonal numbers are the 1st column, the 2nd column are the partial sums of the 1st column, the 3rd column are the partial sums of the 2nd, etc.
Row sums are 1, 9, 31, 81, 187, 405, 847 = 7*(2^n-1) - 6*n. - R. J. Mathar, Sep 06 2011

Examples

			First few rows of the triangle:
   1;
   8,   1;
  21,   9,   1;
  40,  30,  10,   1;
  65,  70,  40,  11,   1;
  96, 135, 110,  51,  12,   1;
  ...
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover (1966), p. 189.

Crossrefs

Programs

  • PARI
    t(n, k) = if (n <0, 0, if (k==1, n*(3*n-2), if (k > 1, t(n-1,k-1) + t(n-1,k))));
    tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(t(n, k), ", ");); print(););} \\ Michel Marcus, Mar 04 2014

Formula

T(n,1) = A000567(n).
T(n,k) = T(n-1,k-1) + T(n-1,k), k>1.
T(n,2) = A002414(n-1).
T(n,3) = A002419(n-2).
T(n,4) = A051843(n-4).
T(n,5) = A027810(n-6).

Extensions

More terms from Michel Marcus, Mar 04 2014

A140729 Diagonal A(n,n) of array A(k,n) = Product of first n of k-gonal pyramidal numbers.

Original entry on oeis.org

40, 2100, 324000, 117771500, 86640153600, 115851776040000, 260111401804800000, 922852527136155000000, 4931966428685936640000000, 38193820496218904209973280000, 415101787718859995456102400000000
Offset: 3

Views

Author

Jonathan Vos Post, May 25 2008

Keywords

Comments

The array A(k,n) = Product of first n k-gonal pyramidal numbers begins:
===================================================================
..|n=1|n=2|..n=3|...n=4..|......n=5....|......n=6......|......n=7......|.......n=8.........|
k=3|.1.|.4.|..40.|....800.|.......28000.|.......1568000.|.....131712000.|.......15805440000.|A087047
k=4|.1.|.5.|..70.|...2100.|......115500.|......10510500.|....1471470000.|......300179880000.|
k=5|.1.|.6.|.108.|...4320.|......324000.|......40824000.|....8001504000.|.....2304433152000.|
k=6|.1.|.7.|.154.|...7700.|......731500.|.....117771500.|...29678418000.|....11040371496000.|
k=7|.1.|.8.|.208.|..12480.|.....1435200.|.....281299200.|...86640153600.|....39507910041600.|
k=8|.1.|.9.|.270.|.718900.|.....2551500.|.....589396500.|..214540326000.|...115851776040000.|
===================================================================

Examples

			a(3) = product of the first 3 triangular pyramidal (tetrahedral) numbers (A000292) = A087047(3) = 1 * 4 * 10 = 40.
a(4) = product of the first 4 square pyramidal numbers (A000330) = 1 * 5 * 14 * 30 = 2100.
a(5) = product of the first 5 pentagonal pyramidal numbers (A002411) = 1 * 6 * 18 * 40 * 75 = 324000.
a(6) = product of the first 6 hexagonal pyramidal numbers (A002412) = 1 * 7 * 22 * 50 * 95 * 161 = 117771500.
a(7) = product of the first 7 heptagonal pyramidal numbers (A002413) = 1 * 8 * 26 * 60 * 115 * 196 * 308 = 86640153600.
a(8) = product of the first 8 octagonal pyramidal numbers (A002414) = 1 * 9 * 30 * 70 * 135 * 231 * 364 * 540 = 115851776040000.
		

Crossrefs

Programs

  • Maple
    A130729 := proc(n) n!*(n+1)!*(n-2)^n*pochhammer(1+(5-n)/(n-2),n)/6^n ; end: seq(A130729(n),n=3..30) ; # R. J. Mathar, May 31 2008

Formula

A(k,n) = PRODUCT[j=1..n] (1/6)*j*(j+1)*[(k-2)*j+(5-k)].
a(n) ~ Pi^(3/2) * n^(4*n + 1/2) / (2^(n - 3/2) * 3^(n-1) * exp(3*n+2)) * (1 + (3*log(n) + 3*gamma + 5/4)/n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 29 2023

Extensions

More terms from R. J. Mathar, May 31 2008

A143219 Triangle read by rows, A127648 * A000012 * A127773, 1 <= k <= n.

Original entry on oeis.org

1, 2, 6, 3, 9, 18, 4, 12, 24, 40, 5, 15, 30, 50, 75, 6, 18, 36, 60, 90, 126, 7, 21, 42, 70, 105, 147, 196, 8, 24, 48, 80, 120, 168, 224, 288, 9, 27, 54, 90, 135, 189, 252, 324, 405, 10, 30, 60, 100, 150, 210, 280, 360, 450, 550
Offset: 1

Views

Author

Gary W. Adamson, Jul 30 2008

Keywords

Examples

			First few rows of the triangle =
  1;
  2,  6;
  3,  9, 18;
  4, 12, 24, 40;
  5, 15, 30, 50,  75;
  6, 18, 36, 60,  90, 126;
  7, 21, 42, 70, 105, 147, 196;
  ...
		

Crossrefs

Cf. A002024, A002411 (right border), A002414, A002417 (row sums), A011379.

Programs

  • Magma
    [n*Binomial(k+1, 2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 12 2022
    
  • Mathematica
    Table[n*Binomial[k+1, 2], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 12 2022 *)
  • SageMath
    flatten([[n*binomial(k+1, 2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jul 12 2022

Formula

Triangle read by rows, A127648 * A000012 * A127773, 1 <= k <= n.
Sum_{k=1..n} T(n, k) = A002417(n).
T(n, n) = A002411(n).
From G. C. Greubel, Jul 12 2022: (Start)
T(n, k) = A002024(n,k) * A127773(n,k).
T(n, k) = n * binomial(k+1, 2).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/4)*(4*n - 3*floor((n+1)/2) + 3)*binomial(2 + floor((n+1)/2), 3).
T(2*n-1, n) = A002414(n), n >= 1.
T(2*n-2, n-1) = A011379(n-1), n >= 2. (End)

A172045 a(n) = (9*n^4+10*n^3-3*n^2-4*n)/12.

Original entry on oeis.org

0, 1, 17, 80, 240, 565, 1141, 2072, 3480, 5505, 8305, 12056, 16952, 23205, 31045, 40720, 52496, 66657, 83505, 103360, 126560, 153461, 184437, 219880, 260200, 305825, 357201, 414792, 479080, 550565, 629765, 717216, 813472, 919105, 1034705
Offset: 0

Views

Author

Vincenzo Librandi, Jan 24 2010

Keywords

Comments

The sequence is related to A002414 (octagonal pyramidal numbers) by a(n) = n*A002414(n)-sum(A002414(i), i=1..n-1) for n>0.
This is the case d=3 in the identity n*(n*(n+1)*(2*d*n-2*d+3)/6)-sum(k*(k+1)*(2*d*k-2*d+3)/6, k=0..n-1) = n*(n+1)*(3*d*n^2-d*n+4*n-2*d+2)/12. - Bruno Berselli, Nov 03 2010
Also, the sequence is related to A000567 by a(n) = sum( i*A000567(i), i=0..n ). [Bruno Berselli, Dec 19 2013]

Crossrefs

Programs

  • Magma
    [(9*n^4+10*n^3-3*n^2-4*n)/12: n in [0..50]]; // Vincenzo Librandi, Jan 01 2014
  • Mathematica
    CoefficientList[Series[x (1 + 12 x + 5 x^2)/(1 - x)^5,{x, 0, 40}], x] (* Vincenzo Librandi, Jan 01 2014 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,1,17,80,240},40] (* Harvey P. Dale, Aug 25 2019 *)

Formula

a(n) = n*(n+1)*(9*n^2+n-4)/12. - Bruno Berselli, Apr 21 2010
G.f. -x*(1 +12*x +5*x^2) / (x - 1)^5 . - R. J. Mathar, Nov 17 2011

Extensions

Edited by Bruno Berselli, Oct 06 - 12 2010
Previous Showing 31-40 of 52 results. Next