A095871
Triangle read by rows: T(n,k)=(n+1)*(3*(n+1)-1)/2-k*(3*k-1)/2.
Original entry on oeis.org
1, 5, 4, 12, 11, 7, 22, 21, 17, 10, 35, 34, 30, 23, 13, 51, 50, 46, 39, 29, 16, 70, 69, 65, 58, 48, 35, 19, 92, 91, 87, 80, 70, 57, 41, 22, 117, 116, 112, 105, 95, 82, 66, 47, 25, 145, 144, 140, 133, 123, 110, 94, 75, 53, 28, 176, 175, 171, 164, 154, 141, 125, 106, 84, 59
Offset: 1
Column 3 = A059845: 7, 17, 30, 46, 65...; while rightmost terms of rows are 1, 4, 7, 10...
First few rows of the triangle =
1;
5, 4;
12, 11, 7;
22, 21, 17, 10;
35, 34, 30, 23, 13;
51, 50, 46, 39, 29, 16;
70, 69, 65, 58, 48, 35, 19;
...
-
T(n, k) = local(i); if(k>n,0,(n+1)*(3*(n+1)-1)/2-k*(3*k-1)/2)
for(i=0,10, for(j=0,i,print1(T(i,j),", "));print()) \\ Lambert Klasen
More terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 21 2005
A095872
Square of the lower triangular matrix T[i,j] = 3j-2 for 1<=j<=i, read by rows.
Original entry on oeis.org
1, 5, 16, 12, 44, 49, 22, 84, 119, 100, 35, 136, 210, 230, 169, 51, 200, 322, 390, 377, 256, 70, 176, 455, 580, 624, 560, 361, 70, 276, 455, 580, 624, 560, 361, 92, 364, 609, 800, 910, 912, 779, 484, 117, 464, 784, 1050, 1235, 1312, 1254, 1034, 625, 145, 576, 980, 1330, 1599
Offset: 1
Let M = the infinite lower triangular matrix in the format exemplified by a 3rd order matrix: [1 0 0 / 1 4 0 / 1 4 7]: i.e. for the n-th order matrix, each row has n terms in the series 1, 4, 7, 10... with the rest of the spaces filled in with zeros. Square the matrix and delete the zeros; then read by rows.
[1 0 0 / 1 4 0 / 1 4 7]^2 = [1 0 0 / 5 16 0 / 12 44 49]; then delete the zeros and read by rows: 1, 5, 16, 12, 44, 49...
-
A095802(n)={ my( r=sqrtint(2*n)+1, T=matrix(r,r,i,j,if(j>=i,3*j-2))^2); concat(vector(#T,i,vecextract(T[,i],2^i-1)))[n] } \\ M. F. Hasler, Apr 18 2009
A104728
Triangle T(n,k) = (k-1-n)*(k-2-n)*(k-2+2*n)/2 read by rows, 1<=k<=n.
Original entry on oeis.org
1, 9, 4, 30, 18, 7, 70, 48, 27, 10, 135, 100, 66, 36, 13, 231, 180, 130, 84, 45, 16, 364, 294, 225, 160, 102, 54, 19, 540, 448, 357, 270, 190, 120, 63, 22, 765, 648, 532, 420, 315, 220, 138, 72, 25, 1045, 900, 756, 616, 483, 360, 250, 156, 81, 28, 1386, 1210, 1035, 864, 700, 546, 405, 280, 174, 90, 31
Offset: 1
The first few rows of the triangle are:
1;
9, 4;
30, 18, 7;
70, 48, 27, 10;
135, 100, 66, 36, 13;
231, 180, 130, 84, 45, 16;
364, 294, 225, 160, 102, 54, 19;
540, 448, 357, 270, 190, 120, 63, 22;
765, 648, 532, 420, 315, 220, 138, 72, 25;
1045, 900, 756, 616, 483, 360, 250, 156, 81, 28;
1386, 1210, 1035, 864, 700, 546, 405, 280, 174, 90, 31;
1794, 1584, 1375, 1170, 972, 784, 609, 450, 310, 192, 99, 34, etc.
-
A104728 := proc(n)
(k-1-n)*(k-2-n)*(k-2+2*n)/2 ;
end proc:
seq(seq(A104728(n,k),k=1..n),n=1..14) ; # R. J. Mathar, Nov 07 2011
-
Table[(k-1-n)(k-2-n)(k-2+2n)/2,{n,20},{k,n}]//Flatten (* Harvey P. Dale, Dec 25 2018 *)
A136526
Coefficients polynomials B(x, n) = ((1 + a + b)*x - c)*B(x, n-1) - a*b*B(x, n-2) with a = 3, b = 2, and c = 0.
Original entry on oeis.org
1, 0, 1, -6, 0, 6, 0, -42, 0, 36, 36, 0, -288, 0, 216, 0, 468, 0, -1944, 0, 1296, -216, 0, 4536, 0, -12960, 0, 7776, 0, -4104, 0, 38880, 0, -85536, 0, 46656, 1296, 0, -51840, 0, 311040, 0, -559872, 0, 279936, 0, 32400, 0, -544320, 0, 2379456, 0, -3639168, 0, 1679616
Offset: 0
Triangle begins as:
1;
0, 1;
-6, 0, 6;
0, -42, 0, 36;
36, 0, -288, 0, 216;
0, 468, 0, -1944, 0, 1296;
-216, 0, 4536, 0, -12960, 0, 7776;
0, -4104, 0, 38880, 0, -85536, 0, 46656;
1296, 0, -51840, 0, 311040, 0, -559872, 0, 279936;
- Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, page 93
Cf.
A000567,
A002414,
A002419,
A016921,
A027810,
A030192,
A034265,
A051843,
A054487,
A055848,
A081106,
A136531.
-
f:= func< n,k | k eq 0 select (-1)^Floor(n/2) else (-1)^Floor((n-k)/2)*6^Floor((k-1)/2)*(1/k)*(6*Floor((n-k)/2) +k)*Binomial(Floor((n-k)/2) +k-1, k-1) >;
A136526:= func< n,k | ((n+k+1) mod 2)*6^Floor(n/2)*f(n,k) >;
[A136526(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 22 2022
-
(* First program *)
a= (b+1)/(b-1); c=0; b=2;
B[x_, n_]:= B[x, n]= If[n<2, x^n, ((1+a+b)*x -c)*B[x, n-1] -a*b*B[x, n-2]];
Table[CoefficientList[B[x,n], x], {n,0,10}]//Flatten
(* Second program *)
B[x_, n_]:= 6^(n/2)*(ChebyshevU[n, Sqrt[3/2]*x] -(5*x/Sqrt[6])*ChebyshevU[n-1, Sqrt[3/2]*x]);
Table[CoefficientList[B[x, n], x]/6^Floor[n/2], {n,0,16}]//Flatten (* G. C. Greubel, Sep 22 2022 *)
-
def f(n,k):
if (k==0): return (-1)^(n//2)
else: return (-1)^((n-k)//2)*6^((k-1)//2)*(1/k)*(6*((n-k)//2) + k)*binomial(((n-k)//2) +k-1, k-1)
def A136526(n,k): return ((n+k+1)%2)*6^(n//2)*f(n,k)
flatten([[A136526(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 22 2022
A273325
Number of endofunctions on [2n] such that the minimal cardinality of the nonempty preimages equals n.
Original entry on oeis.org
1, 2, 36, 300, 1960, 11340, 60984, 312312, 1544400, 7438860, 35103640, 162954792, 746347056, 3380195000, 15164074800, 67476121200, 298135873440, 1309153089420, 5717335239000, 24847720451400, 107520292479600, 463440029892840, 1990477619679120, 8521600803066000
Offset: 0
a(1) = 2: 12, 21.
a(2) = 36: 1122, 1133, 1144, 1212, 1221, 1313, 1331, 1414, 1441, 2112, 2121, 2211, 2233, 2244, 2323, 2332, 2424, 2442, 3113, 3131, 3223, 3232, 3311, 3322, 3344, 3434, 3443, 4114, 4141, 4224, 4242, 4334, 4343, 4411, 4422, 4433.
-
a:= proc(n) option remember; `if`(n<2, 2^n,
2*(2*n-1)^2*a(n-1)/((n-1)*(2*n-3)))
end:
seq(a(n), n=0..30);
-
a[n_] := (2*n^3 + n^2 - n) * CatalanNumber[n]; a[0] = 1; Array[a, 30, 0] (* Amiram Eldar, Mar 12 2023 *)
A378361
Octagonal indices of numbers that are both octagonal and octagonal pyramidal.
Original entry on oeis.org
0, 1, 19, 45, 6413415, 16068720
Offset: 1
19 is a term because the 19th octagonal number (1045) is also the 10th octagonal pyramidal number.
Cf.
A000567 (octagonal numbers),
A002414 (octagonal pyramidal numbers).
A125235
Triangle with the partial column sums of the octagonal numbers.
Original entry on oeis.org
1, 8, 1, 21, 9, 1, 40, 30, 10, 1, 65, 70, 40, 11, 1, 96, 135, 110, 51, 12, 1, 133, 231, 245, 161, 63, 13, 1, 176, 364, 476, 406, 224, 76, 14, 1, 225, 540, 840, 882, 630, 300, 90, 15, 1, 280, 765, 1380, 1722, 1512, 930, 390, 105, 16, 1
Offset: 1
First few rows of the triangle:
1;
8, 1;
21, 9, 1;
40, 30, 10, 1;
65, 70, 40, 11, 1;
96, 135, 110, 51, 12, 1;
...
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover (1966), p. 189.
-
t(n, k) = if (n <0, 0, if (k==1, n*(3*n-2), if (k > 1, t(n-1,k-1) + t(n-1,k))));
tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(t(n, k), ", ");); print(););} \\ Michel Marcus, Mar 04 2014
A140729
Diagonal A(n,n) of array A(k,n) = Product of first n of k-gonal pyramidal numbers.
Original entry on oeis.org
40, 2100, 324000, 117771500, 86640153600, 115851776040000, 260111401804800000, 922852527136155000000, 4931966428685936640000000, 38193820496218904209973280000, 415101787718859995456102400000000
Offset: 3
a(3) = product of the first 3 triangular pyramidal (tetrahedral) numbers (A000292) = A087047(3) = 1 * 4 * 10 = 40.
a(4) = product of the first 4 square pyramidal numbers (A000330) = 1 * 5 * 14 * 30 = 2100.
a(5) = product of the first 5 pentagonal pyramidal numbers (A002411) = 1 * 6 * 18 * 40 * 75 = 324000.
a(6) = product of the first 6 hexagonal pyramidal numbers (A002412) = 1 * 7 * 22 * 50 * 95 * 161 = 117771500.
a(7) = product of the first 7 heptagonal pyramidal numbers (A002413) = 1 * 8 * 26 * 60 * 115 * 196 * 308 = 86640153600.
a(8) = product of the first 8 octagonal pyramidal numbers (A002414) = 1 * 9 * 30 * 70 * 135 * 231 * 364 * 540 = 115851776040000.
Original entry on oeis.org
1, 2, 6, 3, 9, 18, 4, 12, 24, 40, 5, 15, 30, 50, 75, 6, 18, 36, 60, 90, 126, 7, 21, 42, 70, 105, 147, 196, 8, 24, 48, 80, 120, 168, 224, 288, 9, 27, 54, 90, 135, 189, 252, 324, 405, 10, 30, 60, 100, 150, 210, 280, 360, 450, 550
Offset: 1
First few rows of the triangle =
1;
2, 6;
3, 9, 18;
4, 12, 24, 40;
5, 15, 30, 50, 75;
6, 18, 36, 60, 90, 126;
7, 21, 42, 70, 105, 147, 196;
...
-
[n*Binomial(k+1, 2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 12 2022
-
Table[n*Binomial[k+1, 2], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 12 2022 *)
-
flatten([[n*binomial(k+1, 2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jul 12 2022
A172045
a(n) = (9*n^4+10*n^3-3*n^2-4*n)/12.
Original entry on oeis.org
0, 1, 17, 80, 240, 565, 1141, 2072, 3480, 5505, 8305, 12056, 16952, 23205, 31045, 40720, 52496, 66657, 83505, 103360, 126560, 153461, 184437, 219880, 260200, 305825, 357201, 414792, 479080, 550565, 629765, 717216, 813472, 919105, 1034705
Offset: 0
-
[(9*n^4+10*n^3-3*n^2-4*n)/12: n in [0..50]]; // Vincenzo Librandi, Jan 01 2014
-
CoefficientList[Series[x (1 + 12 x + 5 x^2)/(1 - x)^5,{x, 0, 40}], x] (* Vincenzo Librandi, Jan 01 2014 *)
LinearRecurrence[{5,-10,10,-5,1},{0,1,17,80,240},40] (* Harvey P. Dale, Aug 25 2019 *)
Comments