cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 115 results. Next

A076455 Sum of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly two ways.

Original entry on oeis.org

5, 57, 246, 710, 1635, 3255, 5852, 9756, 15345, 23045, 33330, 46722, 63791, 85155, 111480, 143480, 181917, 227601, 281390, 344190, 416955, 500687, 596436, 705300, 828425, 967005, 1122282, 1295546, 1488135, 1701435, 1936880, 2195952, 2480181
Offset: 1

Views

Author

Floor van Lamoen, Oct 13 2002

Keywords

References

  • Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.

Crossrefs

Programs

  • Magma
    [n*(n+1)*(4*n^2+2*n-1)/2: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
  • Maple
    seq(1/2*n*(n+1)*(4*n^2+2*n-1),n=1..40);
  • Mathematica
    CoefficientList[Series[(5 + 32 x + 11 x^2)/(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)

Formula

G.f.: x*(5 + 32*x + 11*x^2)/(1 - x)^5.
a(n) = n*(n + 1)*(4*n^2 + 2*n - 1)/2.

A213840 a(n) = n*(1 + n)*(3 - 4*n + 4*n^2)/6.

Original entry on oeis.org

1, 11, 54, 170, 415, 861, 1596, 2724, 4365, 6655, 9746, 13806, 19019, 25585, 33720, 43656, 55641, 69939, 86830, 106610, 129591, 156101, 186484, 221100, 260325, 304551, 354186, 409654, 471395, 539865, 615536, 698896, 790449, 890715, 1000230, 1119546, 1249231
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2012

Keywords

Comments

Antidiagonal sums of the convolution array A213838.
The sequence is the binomial transform of (1, 10, 33, 40, 16, 0, 0, 0, ...). - Gary W. Adamson, Jul 31 2015
From Mircea Dan Rus, Jul 11 2020: (Start)
a(n) is also the number of rectangles in a square biscuit of order n, which is obtained by stacking 2n-1 rows with their centers vertically aligned which consist successively of 1, 3, ..., 2n-3, 2n-1, 2n-3, ..., 3, 1 consecutive unit lattice squares. The order 2 and 3 square biscuits are shown below which contain 11 and 54 rectangles respectively.
|__|
|__| |__||__|
||__|| ||__||__||
|| ||__||
||
(End)

Crossrefs

First differences of A271870. - J. M. Bergot, Aug 29 2016

Programs

  • Magma
    [n*(1+n)*(3-4*n+4*n^2)/6: n in [1..60]]; // Vincenzo Librandi, Aug 01 2015
  • Maple
    A213840:=n->n*(1 + n)*(3 - 4*n + 4*n^2)/6: seq(A213840(n), n=1..50); # Wesley Ivan Hurt, Sep 16 2017
  • Mathematica
    Table[n (1 + n) (3 - 4 n + 4 n^2)/6, {n, 50}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 11, 54, 170, 415}, 40] (* Vincenzo Librandi, Aug 01 2015 *)

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(1 + 3*x)^2/(1 - x)^5.
From Mircea Dan Rus, Aug 26 2020: (Start)
a(n) = A000332(n+3) + 6*A000332(n+2) + 9*A000332(n+1).
a(n) = A002417(n) + 3*A002417(n-1). (End)

Extensions

Edited (with simpler definition) by N. J. A. Sloane, Sep 19 2017

A261721 Fourth-dimensional figurate numbers.

Original entry on oeis.org

1, 1, 5, 1, 6, 15, 1, 7, 20, 35, 1, 8, 25, 50, 70, 1, 9, 30, 65, 105, 126, 1, 10, 35, 80, 140, 196, 210, 1, 11, 40, 95, 175, 266, 336, 330, 1, 12, 45, 110, 210, 336, 462, 540, 495, 1, 13, 50, 125, 245, 406, 588, 750, 825, 715, 1, 14, 55, 140, 280, 476, 714, 960, 1155, 1210, 1001, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 30 2015

Keywords

Comments

Generating polygons for the sequences are: Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, ... .
n-th row sequence is the binomial transform of the fourth row of Pascal's triangle (1,n) followed by zeros; and the fourth partial sum of (1, n, n, n, ...).
n-th row sequence is the binomial transform of:
((n-1) * (0, 1, 3, 3, 1, 0, 0, 0) + (1, 4, 6, 4, 1, 0, 0, 0)).
Given the n-th row of the array (1, b, c, d, ...), the next row of the array is (1, b, c, d, ...) + (0, 1, 5, 15, 35, ...)

Examples

			The array as shown in A257200:
  1,  5, 15,  35,  70, 126, 210,  330, ... A000332
  1,  6, 20,  50, 105, 196, 336,  540, ... A002415
  1,  7, 25,  65, 140, 266, 462,  750, ... A001296
  1,  8, 30,  80, 175, 336, 588,  960, ... A002417
  1,  9, 35,  95, 210, 406, 714, 1170, ... A002418
  1, 10, 40, 110, 245, 476, 840, 1380, ... A002419
  ...
(1, 7, 25, 65, 140, ...) is the third row of the array and is the binomial transform of the fourth row of Pascal's triangle (1,3) followed by zeros: (1, 6, 12, 10, 3, 0, 0, 0, ...); and the fourth partial sum of (1, 3, 3, 3, 0, 0, 0).
(1, 7, 25, 65, 140, ...) is the third row of the array and is the binomial transform of: (2 * (0, 1, 3, 3, 1, 0, 0, 0, ...) + (1, 4, 6, 4, 1, 0, 0, 0, ...)); that is, the binomial transform of (1, 6, 12, 10, 3, 0, 0, 0, ...).
Row 2 of the array is (1, 5, 15, 35, 70, ...) + (0, 1, 5, 15, 35, ...), = (1, 6, 20, 50, 105, ...).
		

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers"; Dover, 1966, p. 195 (Table 80).

Crossrefs

Cf. A257200, A261720 (pyramidal numbers), A000332, A002415, A001296, A002417, A002418, A002419.
Similar to A080852 but without row n=0.
Main diagonal gives A256859.

Programs

  • Maple
    A:= (n, k)-> binomial(k+3, 3) + n*binomial(k+3, 4):
    seq(seq(A(d-k, k), k=0..d-1), d=1..13);  # Alois P. Heinz, Aug 31 2015
  • Mathematica
    row[1] = LinearRecurrence[{5, -10, 10, -5, 1}, {1, 5, 15, 35, 70}, m = 10];
    row1 = Join[{0}, row[1] // Most]; row[n_] := row[n] = row[n-1] + row1;
    Table[row[n-k+1][[k]], {n, 1, m}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 26 2016 *)
  • PARI
    A(n, k) = binomial(k+3, 3) + n*binomial(k+3, 4)
    table(n, k) = for(x=1, n, for(y=0, k-1, print1(A(x, y), ", ")); print(""))
    /* Print initial 6 rows and 8 columns as follows: */
    table(6, 8) \\ Felix Fröhlich, Jul 28 2016

Formula

G.f. for row n: (1 + (n-1)*x)/(1 - x)^5.
A(n,k) = C(k+3,3) + n * C(k+3,4) = A080852(n,k).
E.g.f. as array: exp(y)*(exp(x)*(24 + 24*(3 + x)*y + 36*(1 + x)*y^2 + 4*(1 + 3*x)*y^3 + x*y^4) - 4*(6 + 18*y + 9*y^2 + y^3))/24. - Stefano Spezia, Aug 15 2024

A264850 a(n) = n*(n + 1)*(n + 2)*(7*n - 5)/12.

Original entry on oeis.org

0, 1, 18, 80, 230, 525, 1036, 1848, 3060, 4785, 7150, 10296, 14378, 19565, 26040, 34000, 43656, 55233, 68970, 85120, 103950, 125741, 150788, 179400, 211900, 248625, 289926, 336168, 387730, 445005, 508400, 578336, 655248, 739585, 831810, 932400, 1041846
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 26 2015

Keywords

Comments

Partial sums of 16-gonal (or hexadecagonal) pyramidal numbers. Therefore, this is the case k=7 of the general formula n*(n + 1)*(n + 2)*(k*n - k + 2)/12, which is related to 2*(k+1)-gonal pyramidal numbers.

Crossrefs

Cf. A172076.
Cf. similar sequences with formula n*(n+1)*(n+2)*(k*n-k+2)/12: A000292 (k=0), A002415 (which arises from k=1), A002417 (k=2), A002419 (k=3), A051797 (k=4), A051799 (k=5), A220212 (k=6), this sequence (k=7), A264851 (k=8), A264852 (k=9).

Programs

  • Magma
    [n*(n+1)*(n+2)*(7*n-5)/12: n in [0..50]]; // Vincenzo Librandi, Nov 27 2015
    
  • Mathematica
    Table[n (n + 1) (n + 2) (7 n - 5)/12, {n, 0, 50}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,18,80,230},40] (* Harvey P. Dale, Sep 27 2018 *)
  • PARI
    a(n)=n*(n+1)*(n+2)*(7*n-5)/12 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: x*(1 + 13*x)/(1 - x)^5.
a(n) = Sum_{k = 0..n} A172076(k).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Nov 27 2015

A290939 Number of 5-cycles in the n-triangular graph.

Original entry on oeis.org

0, 0, 24, 312, 1584, 5376, 14448, 33264, 68544, 129888, 230472, 387816, 624624, 969696, 1458912, 2136288, 3055104, 4279104, 5883768, 7957656, 10603824, 13941312, 18106704, 23255760, 29565120, 37234080, 46486440, 57572424, 70770672, 86390304, 104773056, 126295488
Offset: 2

Views

Author

Eric W. Weisstein, Aug 14 2017

Keywords

Crossrefs

Cf. A002417 (number of 3-cycles in the triangular graph), A151974 (4-cycles), A290940 (6-cycles).

Programs

  • Mathematica
    Table[12/5 Binomial[n, 4] (n^2 + 7 n - 34), {n, 2, 20}]
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 24, 312, 1584, 5376, 14448}, 20]
    CoefficientList[Series[(24 (-x^2 - 6 x^3 + 4 x^4))/(-1 + x)^7, {x, 0, 20}], x]
  • PARI
    a(n)=12*binomial(n, 4)*(n^2+7*n-34)/5 \\ Charles R Greathouse IV, Aug 14 2017

Formula

a(n) = 12/5 * binomial(n, 4) * (n^2 + 7*n - 34).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: (24 x^2 (-x^2 - 6 x^3 + 4 x^4))/(-1 + x)^7.

A290940 Number of 6-cycles in the n-triangular graph.

Original entry on oeis.org

0, 0, 16, 920, 7800, 36260, 122080, 334656, 794640, 1696200, 3334320, 6137560, 10706696, 17859660, 28683200, 44591680, 67393440, 99365136, 143334480, 202771800, 281890840, 385759220, 520418976, 693017600, 911950000, 1187011800, 1529564400, 1952712216, 2471492520
Offset: 2

Views

Author

Eric W. Weisstein, Aug 14 2017

Keywords

Crossrefs

Cf. A002417 (3-cycles), A151974 (4-cycles), A290939 (5-cycles).

Programs

  • Mathematica
    Table[2 Binomial[n, 4] (n^3 + 27 n^2 - 220 n + 392), {n, 2, 20}]
    LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 16, 920, 7800, 36260, 122080, 334656}, 20]
    CoefficientList[Series[-((4 (-4 x^2 - 198 x^3 - 222 x^4 + 319 x^5))/(-1 + x)^8), {x, 0, 20}], x]

Formula

a(n) = 2*binomial(n, 4) (n^3 + 27*n^2 - 220*n + 392).
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: -((4*x^2 (-4*x^2 - 198*x^3 - 222*x^4 + 319*x^5))/(-1 + x)^8).

A317019 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*binomial(k+2,3)).

Original entry on oeis.org

1, 1, 9, 39, 155, 570, 2131, 7599, 26667, 90996, 305144, 1004173, 3254123, 10385884, 32704819, 101678860, 312435675, 949498206, 2855953018, 8507079361, 25108844890, 73468004480, 213201630328, 613871526178, 1754365814430, 4978113020152, 14029639217532, 39281646364737
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 19 2018

Keywords

Comments

Euler transform of A002417.

Crossrefs

Programs

  • Maple
    a:=series(mul(1/(1-x^k)^(k*binomial(k+2,3)),k=1..100),x=0,28): seq(coeff(a,x,n),n=0..27); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 27; CoefficientList[Series[Product[1/(1 - x^k)^(k Binomial[k + 2, 3]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 27; CoefficientList[Series[Exp[Sum[x^k (1 + 3 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^3 (d + 1) (d + 2)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 27}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A002417(k).
G.f.: exp(Sum_{k>=1} x^k*(1 + 3*x^k)/(k*(1 - x^k)^5)).
a(n) ~ 1/(2^(601/720) * 3^(359/480) * 7^(119/1440) * n^(839/1440) * Pi^(1/240)) * exp(-Zeta(3)/(12 * Pi^2) + (491 * Zeta(5))/(400 * Pi^4) - (2250423 * Zeta(5)^3)/(10 * Pi^14) + (103355177121 * Zeta(5)^5)/(10 * Pi^24) + Zeta'(-3)/2 + ((-7 * 7^(1/6) * Pi)/(1200 * 2^(1/3) * sqrt(3)) + (27783 * sqrt(3) * 7^(1/6) * Zeta(5)^2)/(40 * 2^(1/3) * Pi^9) - (614365479 * sqrt(3) * 7^(1/6) * Zeta(5)^4)/(16 * 2^(1/3) * Pi^19)) * n^(1/6) + ((-63 * 7^(1/3) * Zeta(5))/(10 * 2^(2/3) * Pi^4) + (214326 * 14^(1/3) * Zeta(5)^3)/Pi^14) * n^(1/3) + ((sqrt(7/3) * Pi)/30 - (1701 * sqrt(21) * Zeta(5)^2)/(2 * Pi^9)) * sqrt(n) + ((27 * 7^(2/3) * Zeta(5))/(2 * 2^(1/3) * Pi^4)) * n^(2/3) + ((2 * 2^(1/3) * sqrt(3) * Pi)/(5 * 7^(1/6))) * n^(5/6)). - Vaclav Kotesovec, Jul 28 2018

A322651 Numbers that are sums of consecutive hexagonal pyramidal numbers (A002412).

Original entry on oeis.org

0, 1, 7, 8, 22, 29, 30, 50, 72, 79, 80, 95, 145, 161, 167, 174, 175, 252, 256, 306, 328, 335, 336, 372, 413, 508, 525, 558, 580, 587, 588, 624, 715, 785, 880, 897, 930, 946, 952, 959, 960, 1149, 1222, 1240, 1310, 1405, 1455, 1477, 1484, 1485, 1547, 1612, 1661, 1864, 1925
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2018

Keywords

Crossrefs

A366035 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^5 / (1 - 3 * A(x)).

Original entry on oeis.org

0, 1, 8, 98, 1440, 23389, 404712, 7314724, 136476912, 2608808180, 50828498336, 1005682252458, 20152470321984, 408149824237302, 8341496306085040, 171812412714350280, 3562961488550366480, 74328284438252301996, 1558783863783469298016, 32844108784368485209320, 694957689921176181019520
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 26 2023

Keywords

Comments

Reversion of g.f. for 4-dimensional figurate numbers A002417 (with signs).

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^5/(1 - 3 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    CoefficientList[InverseSeries[Series[x (1 - 3 x)/(1 + x)^5, {x, 0, 20}], x], x]	
    Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[5 n, n - k - 1] 3^k, {k, 0, n - 1}], {n, 1, 20}]]

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(5*n,n-k-1) * 3^k for n > 0.
a(n) ~ 2^(4*n - 1) * 5^(5*n + 1/2) / (sqrt(Pi) * n^(3/2) * 3^(7*n + 5/2)). - Vaclav Kotesovec, Sep 27 2023

A068240 1/2 the number of colorings of a 4 X 4 square array with n colors.

Original entry on oeis.org

1, 3906, 3000366, 414425080, 19064362455, 428429377026, 5861180425996, 55823546748096, 403783634784285, 2353615149832210, 11531349080992026, 48981767072238936, 184656623163700051, 629125059062885490, 1964980839044519640, 5691311662142685376
Offset: 2

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n*(n-1)*(17493+(-94782+(251492+(-430857+(529770+(-492434 +(355622+(-202160+(90723+(-31939+(8675+(-1762+(253 +(-23+n)*n)*n) *n)*n)*n)*n) *n)*n) *n)*n) *n)*n)*n) /2:
    seq(a(n), n=2..30); # Alois P. Heinz, Apr 27 2012

Formula

From Alois P. Heinz, Apr 27 2012 (Start)
G.f.: -(2507986*x^14 +349887529*x^13 +12282125725*x^12 +158263444274*x^11 +896159384816*x^10 +2455337616143*x^9 +3417678462327*x^8 +2453922059100*x^7 +895941969162*x^6 +158666067383*x^5 +12424532171*x^4 +363949394*x^3 +2934100*x^2 +3889*x+1)*x^2 / (x-1)^17.
a(n) = n*(n-1)*(n^14 -23*n^13 +253*n^12 -1762*n^11 +8675*n^10 -31939*n^9 +90723*n^8 -202160*n^7 +355622*n^6 -492434*n^5 +529770*n^4 -430857*n^3 +251492*n^2 -94782*n +17493)/2.
(End)
Previous Showing 41-50 of 115 results. Next