cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 160 results. Next

A195238 Numbers with at least 2 and not more than 3 distinct prime factors not greater than 7 that are multiples of 7 or of 15.

Original entry on oeis.org

14, 15, 21, 28, 30, 35, 42, 45, 56, 60, 63, 70, 75, 84, 90, 98, 105, 112, 120, 126, 135, 140, 147, 150, 168, 175, 180, 189, 196, 224, 225, 240, 245, 252, 270, 280, 294, 300, 315, 336, 350, 360, 375, 378, 392, 405, 441, 448, 450, 480, 490, 504, 525, 540, 560
Offset: 1

Views

Author

Harvey P. Dale, Sep 13 2011

Keywords

Comments

A143204 is a subsequence.
Subsequence of A002473.

Examples

			a(10) = 60 = 2^2 * 3 * 5.
a(11) = 63 = 3^2 * 7.
a(12) = 70 = 2 * 5 * 7.
		

Crossrefs

Programs

  • Haskell
    a195238 n = a195238_list !! (n-1)
    a195238_list = filter (\x -> a001221 x `elem` [2,3] &&
                                 a006530 x `elem` [5,7] &&
                                 (mod x 7 == 0 || mod x 15 == 0)) [1..]
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Mathematica
    pfsQ[n_]:=Module[{fs=Transpose[FactorInteger[n]][[1]]},Max[fs]<8 && 1Harvey P. Dale, Aug 21 2011 *)
  • PARI
    is(n)=my(v=apply(p->valuation(n,p), [2,3,5,7])); n==2^v[1]*3^v[2]*5^v[3]*7^v[4] && (v[4] || v[2]*v[3]) && factorback(v)==0 && !!v[1]+!!v[2]+!!v[3]+!!v[4]>1 \\ Charles R Greathouse IV, Sep 14 2015

Formula

2 <= A001221(a(n)) <= 3.
5 <= A006530(a(n)) <= 7.
Sum_{n>=1} 1/a(n) = 11/16. - Amiram Eldar, Oct 25 2024

A198375 Smallest n-digit number whose product of digits is n or 0 if no number exists.

Original entry on oeis.org

1, 12, 113, 1114, 11115, 111116, 1111117, 11111118, 111111119, 1111111125, 0, 111111111126, 0, 11111111111127, 111111111111135, 1111111111111128, 0, 111111111111111129, 0, 11111111111111111145, 111111111111111111137, 0, 0, 111111111111111111111138
Offset: 1

Views

Author

Jaroslav Krizek, Oct 23 2011

Keywords

Examples

			113, 131, and 311 are the 3-digit numbers whose product of digits is 3; 113 is the smallest.
		

Crossrefs

Cf. A198376 (largest), A002473, A068191.

Programs

  • Mathematica
    Table[If[FactorInteger[n][[-1, 1]] > 9, 0, i = (10^n - 1)/9; While[i < 10^n && Times @@ IntegerDigits[i] != n, i++]; If[i == 10^n, 0, i]], {n, 30}] (* T. D. Noe, Oct 24 2011 *)
  • Python
    def A198375(n): return int(str(A198376(n))[::-1])
    print([A198375(n) for n in range(1, 25)]) # Michael S. Branicky, Jan 21 2021

Formula

a(A068191(n)) = 0 for n >=1.
a(n) <> 0 iff n in { A002473 }. - Michael S. Branicky, Jan 21 2021

A219697 Primes neighboring a 7-smooth number.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 71, 73, 79, 83, 89, 97, 101, 107, 109, 113, 127, 139, 149, 151, 163, 167, 179, 181, 191, 193, 197, 199, 211, 223, 239, 241, 251, 257, 269, 271, 281, 293, 337, 349, 359, 379, 383, 401, 419, 421, 431
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2012

Keywords

Comments

This is to the 7-smooth numbers A002473 as A219528 is to the 3-smooth numbers A003586 and as A219669 is to the 5-smooth numbers A051037. The first primes NOT within one of a 7-smooth number are 103, 131, 137, 157, 173, ...

Examples

			23 is in the sequence as one of 23-1 = 22 = 2 * 11 and 23+1 = 24 = 2^3 * 3 is 7-smooth and 23 is prime. - _David A. Corneth_, Apr 19 2021
		

Crossrefs

Programs

  • Mathematica
    mx = 2^10; t7 = Select[Sort[Flatten[Table[2^i * 3^j * 5^k * 7^l, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx]}, {k, 0, Log[5, mx]}, {l, 0, Log[7, mx]}]]], # <= mx &]; Union[Select[t7 + 1, PrimeQ], Select[t7 - 1, PrimeQ]] (* T. D. Noe, Nov 26 2012 *)
    Select[Prime[Range[90]],Max[FactorInteger[#-1][[;;,1]]]<11||Max[FactorInteger[#+1][[;;,1]]]<11&] (* Harvey P. Dale, Nov 03 2024 *)
  • PARI
    is7smooth(n) = forprime(p = 2, 7, n /= p^valuation(n, p)); n==1
    is(n) = isprime(n) && (is7smooth(n - 1) || is7smooth(n + 1)) \\ David A. Corneth, Apr 19 2021

Formula

Primes INTERSECTION {2^h 3^i 5^j 7^k +/-1 for h,i,j,k >= 0}.

A237851 a(1)=1; a(n) is the smallest integer not yet in the sequence divisible by all nonzero digits of a(n-1).

Original entry on oeis.org

1, 2, 4, 8, 16, 6, 12, 10, 3, 9, 18, 24, 20, 14, 28, 32, 30, 15, 5, 25, 40, 36, 42, 44, 48, 56, 60, 54, 80, 64, 72, 70, 7, 21, 22, 26, 66, 78, 112, 34, 84, 88, 96, 90, 27, 98, 144, 52, 50, 35, 45, 100, 11, 13, 33, 39, 63, 102, 38, 120, 46, 108, 104, 68, 168
Offset: 1

Views

Author

Eric Angelini, Feb 14 2014

Keywords

Comments

A permutation of the naturals with inverse A237860.
If a(n) is a prime greater than 7 then no digit of a(n-1) is greater than 1, cf. A007088.

Crossrefs

Programs

  • Haskell
    import Data.List (nub, sort, delete)
    a237851 n = a237851_list !! (n-1)
    a237851_list = 1 : f 1 [2..] where
       f x zs = g zs where
         g (u:us) | all ((== 0) . (mod u)) ds = u : f u (delete u zs)
                  | otherwise = g us
                  where ds = dropWhile (<= 1) $
                             sort $ nub $ map (read . return) $ show x
    -- Reinhard Zumkeller, Feb 14 2014
  • Mathematica
    a[1] = 1;
    a[n_] := a[n] = For[k = 1, True, k++, If[FreeQ[Array[a, n-1], k], If[ AllTrue[Select[IntegerDigits[a[n-1]], #>0&] // Union, Divisible[k, #]&], Return[k]]]];
    a /@ Range[100] (* Jean-François Alcover, Nov 26 2019 *)

A253572 Rectangular array A read by upward antidiagonals in which row A(n) is the sequence of all numbers divisible by no prime exceeding prime(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 3, 8, 1, 2, 3, 4, 16, 1, 2, 3, 4, 6, 32, 1, 2, 3, 4, 5, 8, 64, 1, 2, 3, 4, 5, 6, 9, 128, 1, 2, 3, 4, 5, 6, 8, 12, 256, 1, 2, 3, 4, 5, 6, 7, 9, 16, 512, 1, 2, 3, 4, 5, 6, 7, 8, 10, 18, 1024, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 2048
Offset: 1

Views

Author

L. Edson Jeffery, Jan 03 2015

Keywords

Comments

Successive rows tend to A000027.

Examples

			Array A starts:
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, ...}
{1, 2, 3, 4,  6,  8,  9,  12,  16,  18,   24,   27,   32,   36, ...}
{1, 2, 3, 4,  5,  6,  8,   9,  10,  12,   15,   16,   18,   20, ...}
{1, 2, 3, 4,  5,  6,  7,   8,   9,  10,   12,   14,   15,   16, ...}
{1, 2, 3, 4,  5,  6,  7,   8,   9,  10,   11,   12,   14,   15, ...}
{1, 2, 3, 4,  5,  6,  7,   8,   9,  10,   11,   12,   13,   14, ...}
{1, 2, 3, 4,  5,  6,  7,   8,   9,  10,   11,   12,   13,   14, ...}
		

Crossrefs

Cf. A000079, A003586, A051037, A002473, A051038 (these are rows 1-5).
Cf. A000027 (natural numbers), A253573.

Programs

  • Mathematica
    r = 20; c = 20; cmax = Max[300, Prime[r + 1]]; a[1] = Table[2^j, {j, 0, cmax}]; b[1] = a[1]; For[n = 2, n <= r, n++, a[n_] := a[n] = {}; b[n_] := b[n] = {}; a[n] = Union[Flatten[Table[Prime[n]^j*b[n - 1], {j, 0, cmax}]]]; For[k = 1, k <= cmax, k++, AppendTo[b[n], a[n][[k]]]]]; Table[b[n - k + 1][[k]], {n, 13}, {k, n}] // Flatten (* Array antidiagonals flattened. *)
    (* Second program: *)
    rows = 13; smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; t = Table[p = Prime[n]; Take[smoothNumbers[p, If[p == 2, 2^rows, (1/Sqrt[6])* Exp[Sqrt[2*Log[2]*Log[3]*rows]]]], rows-n+1], {n, 1, rows}];  Table[t[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 09 2016 *)

Formula

A(n) = {prime(1)^(i_1)*...*prime(n)^(i_n) : i_1,...,i_n in {0,1,2,...}}.
A(1) subset A(2) subset A(3) subset ... .

Extensions

First formula corrected by Tom Edgar, Jan 08 2015

A254196 a(n) is the numerator of Product_{i=1..n} (1/(1-1/prime(i))) - 1.

Original entry on oeis.org

1, 2, 11, 27, 61, 809, 13945, 268027, 565447, 2358365, 73551683, 2734683311, 112599773191, 4860900544813, 9968041656757, 40762420985117, 83151858555707, 5085105491885327, 341472595155548909, 24295409051193284539
Offset: 1

Views

Author

Geoffrey Critzer, Jan 26 2015

Keywords

Comments

The denominators are A038110(n+1).
a(n)/A038110(n+1) = Sum_{k >=2} 1/k where k is a positive integer whose prime factors are among the first n primes. In particular, for n=1,2,3,4,5, a(n)/A038110(n+1) is the sum of the reciprocals of the terms (excepting the first, 1) in A000079, A003586, A051037, A002473, A051038.
Appears to be a duplicate of A161527. - Michel Marcus, Aug 05 2019

Examples

			a(1)=1 because 1/2 + 1/4 + 1/8 + 1/16 + ... = 1/1.
a(2)=2 because 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/9 + 1/12 + ... = 2/1.
a(3)=11 because 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/8 + 1/9 + 1/10 + 1/12 + 1/15 + ... = 11/4.
a(4)=27 because Sum_{n>=2} 1/A002473(n) = 27/8.
a(5)=61 because Sum_{n>=2} 1/A051038(n) = 61/16.
		

Crossrefs

Programs

  • Maple
    seq(numer(mul(1/(1-1/ithprime(i)),i=1..n)-1),n=1..20); # Robert Israel, Jan 28 2015
  • Mathematica
    Numerator[Table[Product[1/(1 - 1/p), {p, Prime[Range[n]]}] - 1, {n,1,20}]]
    b[0] := 0; b[n_] := b[n - 1] + (1 - b[n - 1]) / Prime[n]
    Numerator@ Table[b[n], {n, 1, 20}] (* Fred Daniel Kline, Jun 27 2017 *)
  • PARI
    a(n) = numerator(prod(i=1, n, (1/(1-1/prime(i)))) - 1); \\ Michel Marcus, Jun 29 2017

Formula

a(n) = A038111(n+1)/prime(n+1)-A038110(n+1). - Robert Israel, Jan 28 2015, corrected Jul 07 2019.

A322447 Numbers k where Sum_{d | k} 1/rad(d) increases to a record.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 72, 96, 144, 192, 288, 384, 576, 864, 1152, 1728, 2304, 3456, 4608, 5184, 6912, 10368, 13824, 20736, 27648, 41472, 55296, 62208, 82944, 124416, 165888, 207360, 248832, 331776, 373248, 414720, 497664, 622080, 746496, 829440, 995328
Offset: 1

Views

Author

David S. Metzler, Dec 08 2018

Keywords

Comments

Let rad(n) be the radical of n, which equals the product of all prime factors of n (A007947). Let g(n) = 1/rad(n) and let f(n) = Sum_{d | n} g(d). This is a multiplicative function whose value on a prime power is f(p^k) = 1 + k/p. Hence f is a weighted divisor-counting function that weights divisors d higher when they have few and small prime divisors themselves. This sequence lists the values where f(n) increases to a record, analogously to highly composite numbers (A002182) or superabundant numbers (A004394). The numbers in this sequence are much smoother than those in the other two sequences, since the definition of f(n) strongly disfavors a lack of smoothness in n.

Examples

			The divisors of 12 are 1,2,3,4,6,12, so f(12) = 1 + (1/2) + (1/3) + (1/2) + (1/6) + (1/6) = 8/3, which exceeds f(n) for n = 1,...,11. Alternately, since f is multiplicative, f(12) = f(4)*f(3) = (1+2/2)*(1+1/3).
f(207360) = f(2^9)*f(3^4)*f(5) = (11/2)*(7/3)*(6/5) = 15.4, which exceeds f(n) for n < 207360. (Note that this is the first value of the sequence that is divisible by 5; earlier values are all 3-smooth.)
		

Crossrefs

Cf. A007947 (radical), A002182, A004394.
Also smooth numbers: A003586, A051037, A002473.

Programs

  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@n); f[n_] := DivisorSum[n, 1/rad[#] &]; fm = 0; s = {}; Do[f1 = f[n]; If[f1 > fm, fm = f1; AppendTo[s, n]], {n, 1, 10^6}]; s (* Amiram Eldar, Dec 08 2018 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    lista(nn) = {my(m=0, newm); for (n=1, nn, newm = sumdiv(n, d, 1/rad(d)); if (newm > m, m = newm; print1(n, ", ")););} \\ Michel Marcus, Dec 09 2018

A335331 a(n) = prime(k) where k is the n-th 7-smooth number.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 43, 47, 53, 61, 71, 73, 89, 97, 103, 107, 113, 131, 149, 151, 173, 181, 197, 223, 227, 229, 251, 263, 281, 307, 311, 349, 359, 379, 409, 419, 433, 463, 503, 521, 541, 571, 593, 613, 659, 691, 701, 719, 761, 809, 827, 853, 863
Offset: 1

Views

Author

David A. Corneth, Jun 01 2020

Keywords

Comments

At A110069 we look for numbers of the form n = (d_1 + d_2 + ... + d_k)*prime(d_1*d_2*...*d_k) where d_1 d_2 ... d_k is the decimal expansion of n. As the largest prime that can be among the digits of a base-10 number is 7, the product of digits is 7-smooth. Hence the factor prime(d_1*d_2*...*d_k) is a term from this sequence. As lots of numbers have a product of digits of, say, 210^4, it would help to know prime(210^4) in advance. That's a(5817) of this sequence as 210^4 is the 5817th 7-smooth number. Precomputing such numbers is a computational benefit.

Crossrefs

A342950 7-smooth numbers not divisible by 10: positive numbers whose prime divisors are all <= 7 but do not contain both 2 and 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 18, 21, 24, 25, 27, 28, 32, 35, 36, 42, 45, 48, 49, 54, 56, 63, 64, 72, 75, 81, 84, 96, 98, 105, 108, 112, 125, 126, 128, 135, 144, 147, 162, 168, 175, 189, 192, 196, 216, 224, 225, 243, 245, 252, 256, 288, 294, 315, 324
Offset: 1

Views

Author

David A. Corneth, Mar 30 2021

Keywords

Examples

			12 is in the sequence as all of its prime divisors are <= 7 and 12 is not divisible by 10.
		

Crossrefs

Union of A108319 and A108347.
Intersection of A002473 and A067251.

Programs

  • Mathematica
    Select[Range@500,Max[First/@FactorInteger@#]<=7&&Mod[#,10]!=0&] (* Giorgos Kalogeropoulos, Mar 30 2021 *)
  • PARI
    is(n) = if(n%10 == 0, return(0)); forprime(p = 2, 7, n/=p^valuation(n, p)); n==1
    
  • Python
    A342950_list, n = [], 1
    while n < 10**9:
        if n % 10:
            m = n
            for p in (2,3,5,7):
                q, r = divmod(m,p)
                while r == 0:
                    m = q
                    q, r = divmod(m,p)
            if m == 1:
                A342950_list.append(n)
        n += 1 # Chai Wah Wu, Mar 31 2021
    
  • Python
    from sympy import integer_log
    def A342950(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,7)[0]+1):
                for j in range(integer_log(m:=x//7**i,3)[0]+1):
                    c -= (k:=m//3**j).bit_length()+integer_log(k,5)[0]
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 17 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    def A342950gen(): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5, 7]
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    if not (p==2 and v%5==0) and not (p==5 and v&1==0):
                        heapq.heappush(h, v*p)
    print(list(islice(A342950gen(), 65))) # Michael S. Branicky, Sep 17 2024

Formula

Sum_{n>=1} 1/a(n) = 63/16. - Amiram Eldar, Apr 01 2021

A343597 Numbers divisible by a 7-smooth composite number.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130
Offset: 1

Views

Author

Peter Munn, Apr 21 2021

Keywords

Comments

Numbers divisible by at least one of 4, 6, 9, 10, 14, 15, 21, 25, 35, 49.
Exactly half of the first 10, first 100 and first 600 positive integers are divisible by a 7-smooth composite number; the largest 7-smooth divisor of the remaining numbers is 1, 2, 3, 5 or 7.
Intervals extending to hundreds of integers with exactly 50% membership of this sequence are far from rare, some notable examples being [3000, 3999], [8000, 8999], [20000, 20999], [21000, 21999] and [23000, 23999]. This reflects the asymptotic density of the corresponding set being close to 0.5, precisely 1847 / 3675 = 0.50258503... (and membership of the set has a periodic pattern). See A343598 for further information.

Examples

			33 = 11 * 3 has divisors 1, 3, 11, 33, of which only 33 is composite. 33 is not 7-smooth, as its prime factors include 11, which is greater than 7. So 33 is not in the sequence.
52 = 13 * 2 * 2 is divisible by 4, which is composite and 7-smooth, so 52 is in the sequence.
		

Crossrefs

Cf. A002473 (7-smooth numbers), A014673, A020639, A210615 (smallest smoothest composite divisor), A343598.
Subsequence of A080672.

Programs

  • Mathematica
    Select[Range[130], Plus @@ IntegerExponent[#, {2, 3, 5, 7}] > 1 &] (* Amiram Eldar, May 04 2021 *)

Formula

{a(n)} = {k : k >= 1, 2 <= A014673(k) <= 7}, where A014673(k) = lpf(k/lpf(k)), where lpf(m) = A020639(m), the least prime factor of m.
For n >= 1, a(22164 + n) = 44100 + a(n).
For n < 22164, a(22164 - n) = 44100 - a(n).
Previous Showing 91-100 of 160 results. Next