cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A199394 The number of ways to color the vertices of all (11) simple unlabeled graphs on 4 nodes using at most n colors.

Original entry on oeis.org

11, 90, 357, 996, 2255, 4446, 7945, 13192, 20691, 31010, 44781, 62700, 85527, 114086, 149265, 192016, 243355, 304362, 376181, 460020, 557151, 668910, 796697, 941976, 1106275, 1291186, 1498365, 1729532, 1986471, 2271030, 2585121, 2930720, 3309867, 3724666
Offset: 1

Views

Author

Geoffrey Critzer, Nov 05 2011

Keywords

Crossrefs

Cf. A002492 (3 nodes).

Programs

  • Mathematica
    Table[Total[Table[CycleIndex[GraphData[{4,k}, "Automorphisms"], s], {k, 1,11}] /. Table[s[i]-> n, {i, 1, 4}]], {n, 1, 25}]
  • PARI
    Vec(-x*(x^3+17*x^2+35*x+11)/(x-1)^5  + O(x^100)) \\ Colin Barker, Sep 22 2013

Formula

a(n)= 8*n^4/3 + 4*n^3 + 10*n^2/3 + n.
G.f.: -x*(x^3+17*x^2+35*x+11) / (x-1)^5. - Colin Barker, Sep 22 2013

Extensions

More terms from Colin Barker, Sep 22 2013
Added a(4) = 996 from Vincenzo Librandi, Sep 23 2013

A270309 Irregular triangle read by rows: T(n,k) = ((n-k)+1)^2 if odd-n and odd-k; T(n,k) = k^2 if odd-n and even-k; T(n,k) = (n/2-(k/2-1/2))^2 if even-n and odd-k; T(n,k) = (k/2+1)^2 if even-n and even-k; where n >= 1, k = 1..2*n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 9, 4, 1, 1, 4, 9, 4, 1, 1, 4, 4, 1, 1, 4, 25, 4, 9, 16, 1, 1, 16, 9, 4, 25, 9, 1, 4, 4, 1, 9, 9, 1, 4, 4, 1, 9, 49, 4, 25, 16, 9, 36, 1, 1, 36, 9, 16, 25, 4, 49, 16, 1, 9, 4, 4, 9, 1, 16, 16, 1, 9, 4, 4, 9, 1, 16, 81, 4, 49, 16, 25, 36, 9, 64, 1, 1, 64, 9, 36, 25, 16, 49, 4, 81, 25, 1, 16, 4, 9, 9, 4, 16, 1, 25, 25, 1, 16, 4, 9, 9, 4, 16, 1, 25
Offset: 1

Views

Author

Kival Ngaokrajang, Mar 15 2016

Keywords

Comments

Refer to A269845, but change to n+2 X n instead of n+1 X n.
There are triangles appearing along main diagonal. If the area of the smallest triangles are defined as 1, then the areas of all other triangles seem to be square numbers. Conjectures: (i) Even terms of row sum is A002492. (ii) Odd terms of row sum/2 is A100157. See illustration in links.

Examples

			Irregular triangle begins:
n\k  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  ...
1    1,  1
2    1,  1,  1,  1
3    9,  4,  1,  1,  4,  9
4    4,  1,  1,  4,  4,  1,  1,  4
5   25,  4,  9, 16,  1,  1, 16,  9,  4, 25
6    9,  1,  4,  4,  1,  9,  9,  1,  4,  4,  1,  9
7   49,  4, 25, 16,  9, 36,  1,  1, 36,  9, 16, 25,  4, 49
8   16,  1,  9,  4,  4,  9,  1, 16, 16,  1,  9,  4,  4,  9,  1, 16
...
		

Crossrefs

A330151 Partial sums of 4th powers of the even numbers.

Original entry on oeis.org

0, 16, 272, 1568, 5664, 15664, 36400, 74816, 140352, 245328, 405328, 639584, 971360, 1428336, 2042992, 2852992, 3901568, 5237904, 6917520, 9002656, 11562656, 14674352, 18422448, 22899904, 28208320, 34458320, 41769936, 50272992, 60107488, 71423984, 84383984
Offset: 0

Views

Author

Assoul Abdelkarim, Dec 03 2019

Keywords

Examples

			a(4) = 0^4 + 2^4 + 4^4 + 6^4 + 8^4 = 5664.
		

Crossrefs

Partial sums of A016744.

Programs

  • Mathematica
    a[n_] := (8/15)*n*(6*n^4 + 15*n^3 + 10*n^2 - 1); Array[a, 31, 0] (* Amiram Eldar, Dec 08 2019 *)
  • PARI
    a(n) = sum(i=0, n, 16*i^4); \\ Jinyuan Wang, Dec 07 2019
    
  • PARI
    concat(0, Vec(16*x*(1 + x)*(1 + 10*x + x^2) / (1 - x)^6 + O(x^30))) \\ Colin Barker, Dec 08 2019
    
  • Python
    def A330151(n): return 8*n*(n**2*(n*(6*n + 15) + 10) - 1)//15 # Chai Wah Wu, Dec 07 2021

Formula

a(n) = Sum_{k=1..n} (2*k)^4 = (8/15)*n*(6*n^4 + 15*n^3 + 10*n^2 - 1).
a(n) = 16*A000538(n).
From Colin Barker, Dec 08 2019: (Start)
G.f.: 16*x*(1 + x)*(1 + 10*x + x^2) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
E.g.f.: (8/15)*exp(x)*x*(30 + 225*x + 250*x^2 + 75*x^3 + 6*x^4). - Stefano Spezia, Dec 08 2019
a(n+1) = 12*A002299(n) + A002492(n+1). - Yasser Arath Chavez Reyes, Mar 07 2024

Extensions

More terms from Jinyuan Wang, Dec 07 2019

A338046 G.f.: Sum_{k>=0} x^(2^k) / (1 - x^(2^k))^4.

Original entry on oeis.org

1, 5, 10, 25, 35, 66, 84, 145, 165, 255, 286, 430, 455, 644, 680, 961, 969, 1305, 1330, 1795, 1771, 2310, 2300, 3030, 2925, 3731, 3654, 4704, 4495, 5640, 5456, 6945, 6545, 8109, 7770, 9741, 9139, 11210, 10660, 13275, 12341, 15015, 14190, 17490, 16215, 19596, 18424, 22630
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Sum[x^(2^k) /(1 - x^(2^k))^4, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := If[EvenQ[n], a[n/2] + n (n + 1) (n + 2)/6, n (n + 1) (n + 2)/6]; Table[a[n], {n, 1, 48}]
    Table[(1/6) DivisorSum[n, Boole[IntegerQ[Log[2, n/#]]] # (# + 1) (# + 2) &], {n, 1, 48}]

Formula

G.f. A(x) satisfies: A(x) = A(x^2) + x / (1 - x)^4.
a(2*n) = a(n) + A002492(n), a(2*n+1) = A000447(n+1).
a(n) = (1/6) * Sum_{d|n} A209229(n/d) * d * (d + 1) * (d + 2).
Product_{n>=1} (1 + x^n)^a(n) = g.f. for A000335.

A349682 a(n) = A000292(6*n + 1) where A000292 are the tetrahedral numbers.

Original entry on oeis.org

1, 84, 455, 1330, 2925, 5456, 9139, 14190, 20825, 29260, 39711, 52394, 67525, 85320, 105995, 129766, 156849, 187460, 221815, 260130, 302621, 349504, 400995, 457310, 518665, 585276, 657359, 735130, 818805, 908600, 1004731, 1107414, 1216865, 1333300, 1456935, 1587986
Offset: 0

Views

Author

Ralf Steiner, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nterms=50;Table[36n^3+36n^2+11n+1,{n,0,nterms-1}] (* Paolo Xausa, Nov 25 2021 *)
  • PARI
    a(n) = subst(m*(m+1)*(m+2)/6, 'm, 6*n+1); \\ Michel Marcus, Dec 16 2021
    
  • Python
    def A349682(n): return n*(n*(36*n + 36) + 11) + 1 # Chai Wah Wu, Dec 27 2021

Formula

a(n) = 1 + 11*n + 36*n^2 + 36*n^3 = (1 + 2*n)*(1 + 3*n)*(1 + 6*n).
G.f.: (1 + 80*x + 125*x^2 + 10*x^3)/(1 - x)^4. - Stefano Spezia, Nov 29 2021
From Elmo R. Oliveira, Aug 22 2025: (Start)
E.g.f.: exp(x)*(1 + 83*x + 144*x^2 + 36*x^3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
From Amiram Eldar, Aug 31 2025: (Start)
Sum_{n>=0} 1/a(n) = Pi/(4*sqrt(3)) + 2*log(2) - 3*log(3)/4.
Sum_{n>=0} (-1)^n/a(n) = (3/4 - 1/sqrt(3))*Pi + sqrt(3)*log(2 + sqrt(3))/2 - log(2). (End)

A361226 Square array T(n,k) = k*((1+2*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 2, 5, 3, 0, 3, 9, 12, 6, 0, 4, 13, 21, 22, 10, 0, 5, 17, 30, 38, 35, 15, 0, 6, 21, 39, 54, 60, 51, 21, 0, 7, 25, 48, 70, 85, 87, 70, 28, 0, 8, 29, 57, 86, 110, 123, 119, 92, 36, 0, 9, 33, 66, 102, 135, 159, 168, 156, 117, 45
Offset: 0

Views

Author

Paul Curtz, Mar 05 2023

Keywords

Comments

The main diagonal is A002414.
The first upper diagonal is A160378(n+1).
The antidiagonals sums are A034827(n+2).
b(n) = (A034827(n+3) = 0, 2, 10, 30, 70, ...) - (A002414(n) = 0, 1, 9, 30, 70, ...) = 0, 1, 1, 0, 0, 5, 21, 56, ... .
b(n+2) = A299120(n). b(n+4) = A033275(n). b(n+4) - b(n) = A002492(n).

Examples

			The rows are
  0, 0,  1,  3,  6,  10,  15,  21, ...   = A161680
  0, 1,  5, 12, 22,  35,  51,  70, ...   = A000326
  0, 2,  9, 21, 38,  60,  87, 119, ...   = A005476
  0, 3, 13, 30, 54,  85, 123, 168, ...   = A022264
  0, 4, 17, 39, 70, 110, 159, 217, ...   = A022266
  ... .
Columns: A000004, A001477, A016813, A017197=3*A016777, 2*A017101, 5*A016873, 3*A017581, 7*A017017, ... (coefficients from A026741).
Difference between two consecutive rows: A000290. Hence A143844.
This square array read by antidiagonals leads to the triangle
  0
  0   0
  0   1   1
  0   2   5   3
  0   3   9  12   6
  0   4  13  21  22  10
  0   5  17  30  38  35  15
  ... .
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := k*((2*n + 1)*k - 1)/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 05 2023 *)
  • PARI
    a(n) = { my(row = (sqrtint(8*n+1)-1)\2, column = n - binomial(row + 1, 2)); binomial(column, 2) + column^2 * (row - column) } \\ David A. Corneth, Mar 05 2023
    
  • Python
    # Seen as a triangle:
    from functools import cache
    @cache
    def Trow(n: int) -> list[int]:
        if n == 0: return [0]
        r = Trow(n - 1)
        return [r[k] + k * k if k < n else r[n - 1] + n - 1 for k in range(n + 1)]
    for n in range(7): print(Trow(n)) # Peter Luschny, Mar 05 2023

Formula

Take successively sequences n*(n-1)/2, n*(3*n-1)/2, n*(5*n-1)/2, ... listed in the EXAMPLE section.
G.f.: y*(x + y)/((1 - y)^3*(1 - x)^2). - Stefano Spezia, Mar 06 2023
E.g.f.: exp(x+y)*y*(2*x + y + 2*x*y)/2. - Stefano Spezia, Feb 21 2024
Previous Showing 31-36 of 36 results.