cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A029863 Expansion of Product_{k >= 1} 1/(1-x^k)^c(k), where c(1), c(2), ... = 2 3 2 3 2 3 2 3 ....

Original entry on oeis.org

1, 2, 6, 12, 27, 50, 98, 172, 310, 522, 888, 1444, 2357, 3724, 5882, 9072, 13957, 21082, 31732, 47072, 69545, 101540, 147620, 212516, 304631, 433054, 613030, 861616, 1206089, 1677766, 2324844, 3203748, 4398602, 6009390, 8181250
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n where there are 2 kinds of odd parts and 3 kinds of even parts. - Ilya Gutkovskiy, Jan 17 2018

Examples

			G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 27*x^4 + 50*x^5 + 98*x^6 + 172*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1 + x^k)*(1 - x^k)^3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 20 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (eta(x + A)^2 * eta(x^2 + A)), n))};

Formula

Euler transform of period 2 sequence [2, 3, ...].
a(n) ~ 5 * exp(sqrt(5*n/3)*Pi) / (48 * n^(3/2)). - Vaclav Kotesovec, Sep 20 2015
G.f.: Product_{k >= 1} 1/(1-x^k)^A010693(k-1). - Georg Fischer, Dec 10 2020

A262380 Expansion of Product_{k>=1} 1/((1+x^k)*(1-x^k)^4).

Original entry on oeis.org

1, 3, 10, 25, 62, 136, 293, 590, 1165, 2205, 4097, 7391, 13120, 22780, 38997, 65613, 109036, 178660, 289575, 463842, 735870, 1155717, 1799620, 2777795, 4254859, 6467115, 9761770, 14633605, 21799465, 32273399, 47506759, 69537814, 101252595, 146675875, 211451893
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 20 2015

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} 1/((1+x^k)*(1-x^k)^m), then a(n) ~ exp(sqrt((2*m-1)*n/3)*Pi) * (2*m-1)^((m+1)/4) / (2^(m+1) * 3^((m+1)/4) * n^((m+3)/4)).

Crossrefs

Cf. A002513 (m=2), A029863 (m=3), A261998.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1 + x^k)*(1 - x^k)^4), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(sqrt(7*n/3)*Pi) * 7^(5/4) / (32 * 3^(5/4) * n^(7/4)).

A318026 Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(3*k))).

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 16, 22, 33, 50, 70, 98, 143, 193, 266, 368, 493, 659, 892, 1170, 1543, 2035, 2642, 3422, 4448, 5694, 7294, 9334, 11839, 14982, 18968, 23812, 29868, 37410, 46598, 57924, 71953, 88913, 109728, 135212, 165991, 203407, 248986, 303706, 369939, 449967, 545820, 661038, 799629
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2018

Keywords

Comments

Convolution of A000041 and A035377.
Convolution of A000712 and A137569.
Convolution inverse of A030203.
Number of partitions of n if there are 2 kinds of parts that are multiples of 3.

Examples

			a(4) = 6 because we have [4], [3, 1], [3', 1], [2, 2], [2, 1, 1] and [1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    a:=series(mul(1/((1-x^k)*(1-x^(3*k))),k=1..55),x=0,49): seq(coeff(a,x,n),n=0..48); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 48; CoefficientList[Series[Product[1/((1 - x^k) (1 - x^(3 k))), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^3]), {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[Exp[Sum[x^k (1 + x^k + 2 x^(2 k))/(k (1 - x^(3 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
    Table[Sum[PartitionsP[k] PartitionsP[n - 3 k], {k, 0, n/3}], {n, 0, 48}]

Formula

G.f.: exp(Sum_{k>=1} x^k*(1 + x^k + 2*x^(2*k))/(k*(1 - x^(3*k)))).
a(n) ~ exp(2*sqrt(2*n)*Pi/3) / (3 * 2^(5/4) * n^(5/4)). - Vaclav Kotesovec, Aug 14 2018

A318027 Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(4*k))).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 13, 18, 29, 39, 57, 77, 112, 148, 205, 271, 372, 484, 647, 838, 1110, 1423, 1852, 2361, 3051, 3857, 4922, 6191, 7849, 9805, 12319, 15314, 19131, 23649, 29333, 36099, 44556, 54568, 66963, 81683, 99803, 121229, 147413, 178411, 216111, 260590, 314365, 377819, 454229
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2018

Keywords

Comments

Convolution of A000041 and A035444.
Convolution of A000712 and A082303.
Convolution inverse of A107034.
Number of partitions of n if there are 2 kinds of parts that are multiples of 4.

Examples

			a(5) = 8 because we have [5], [4, 1], [4', 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1] and [1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    a:=series(mul(1/((1-x^k)*(1-x^(4*k))),k=1..55),x=0,49): seq(coeff(a,x,n),n=0..48); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 48; CoefficientList[Series[Product[1/((1 - x^k) (1 - x^(4 k))), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^4]), {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[Exp[Sum[x^k (1 + x^k + x^(2 k) + 2*x^(3 k))/(k (1 - x^(4 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
    Table[Sum[PartitionsP[k] PartitionsP[n - 4 k], {k, 0, n/4}], {n, 0, 48}]

Formula

G.f.: exp(Sum_{k>=1} x^k*(1 + x^k + x^(2*k) + 2*x^(3*k))/(k*(1 - x^(4*k)))).
a(n) ~ 5^(3/4) * exp(sqrt(5*n/6)*Pi) / (2^(13/4) * 3^(3/4) * n^(5/4)). - Vaclav Kotesovec, Aug 14 2018

A318028 Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(5*k))).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 17, 25, 35, 51, 69, 96, 129, 175, 235, 312, 410, 539, 700, 913, 1173, 1508, 1923, 2450, 3105, 3920, 4926, 6177, 7710, 9614, 11923, 14766, 18218, 22435, 27550, 33750, 41231, 50278, 61150, 74259, 89932, 108744, 131193, 158025, 189979, 227998, 273125, 326692
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2018

Keywords

Comments

Convolution of A000712 and A145466.
Convolution inverse of A030202.
Number of partitions of n if there are 2 kinds of parts that are multiples of 5.

Examples

			a(5) = 8 because we have [5], [5'], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1] and [1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    a:=series(mul(1/((1-x^k)*(1-x^(5*k))),k=1..55),x=0,49): seq(coeff(a,x,n),n=0..48); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 48; CoefficientList[Series[Product[1/((1 - x^k) (1 - x^(5 k))), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^5]), {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[Exp[Sum[x^k (1 + x^k + x^(2 k) + x^(3 k) + 2 x^(4 k))/(k (1 - x^(5 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
    Table[Sum[PartitionsP[k] PartitionsP[n - 5 k], {k, 0, n/5}], {n, 0, 48}]

Formula

G.f.: exp(Sum_{k>=1} x^k*(1 + x^k + x^(2*k) + x^(3*k) + 2*x^(4 k))/(k*(1 - x^(5*k)))).
a(n) ~ exp(2*Pi*sqrt(n/5)) / (4 * 5^(1/4) * n^(5/4)). - Vaclav Kotesovec, Aug 14 2018

A182031 Expansion of q^(-5/24) * (eta(q^3) * eta(q^6))^3 / (eta(q) * eta(q^2))^4 in powers of q.

Original entry on oeis.org

1, 4, 18, 53, 163, 414, 1059, 2431, 5553, 11844, 25013, 50391, 100362, 193136, 367371, 680705, 1247247, 2238408, 3975218, 6941384, 12003156, 20465599, 34581525, 57737205, 95601892, 156665029, 254777220, 410580026, 657015874
Offset: 0

Views

Author

Michael Somos, Apr 07 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 4*x + 18*x^2 + 53*x^3 + 163*x^4 + 414*x^5 + 1059*x^6 + 2431*x^7 + ...
q^5 + 4*q^13 + 18*q^21 + 53*q^29 + 163*q^37 + 414*q^45 + 1059*q^53 + ...
		

References

  • H.-C. Chan, On the Andrews-Schur proof of the Rogers-Ramanujan identities, Ramanujan J. 23 (2010), no. 1-3, 417-431. see p. 430 Theorem 7.

Crossrefs

Cf. A002513.

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-5/8)*(eta[q^3]*eta[q^6])^3/(eta[q]*eta[q^2])^4, {q, 0, 100}], q] (* G. C. Greubel, Apr 16 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^6 + A))^3 / (eta(x + A) * eta(x^2 + A))^4, n))}
    
  • PARI
    q='q+O('q^99); Vec((eta(q^3)*eta(q^6))^3/(eta(q)*eta(q^2))^4) \\ Altug Alkan, Apr 16 2018

Formula

Expansion of (psi(x^3) * phi(-x^3))^3 / (psi(x) * phi(-x))^4 in powers of x where phi(), psi() are Ramanujan theta functions.
Euler transform of period 6 sequence [ 4, 8, 1, 8, 4, 2, ...].
A002513(3*n + 2) = 3 * a(n).

A305168 Number of non-isomorphic graphs on 4n vertices whose edges are the union of two n-edge matchings.

Original entry on oeis.org

1, 3, 9, 23, 54, 118, 246, 489, 940, 1751, 3177, 5630, 9776, 16659, 27922, 46092, 75039, 120615, 191611, 301086, 468342, 721638, 1102113, 1669226, 2508429, 3741741, 5542532, 8155720, 11925654, 17334077, 25051940, 36009468, 51491111, 73263043, 103744575
Offset: 0

Views

Author

Yu Hin Au, Aug 17 2018

Keywords

Comments

a(n) is also the number of partitions of 2n with two kinds of parts where all parts of the second kind are even. E.g., the a(2) = 9 such partitions are (2', 2'), (4'), (2,2'), (4), (1,1,2'), (3,1), (2,2), (2,1,1), (1,1,1,1). A bijection is to take each component in the graph whose edges are the union of two n-edge matchings, map each path of length p to a part p and each cycle (which must be even) of length p to a part p'.

Examples

			To see a(2)=9, observe that all graphs that are the union of two matchings of size n=2 are isomorphic to the union of S = {{1,2},{3,4}} and one of T=
  1. {{1,2}, {3,4}} --> (2',2')
  2. {{1,3}, {2,4}} --> (4')
  3. {{1,5}, {3,4}} --> (2,2')
  4. {{1,3}, {4,5}} --> (4)
  5. {{1,2}, {5,6}} --> (1,1,2')
  6. {{1,3}, {5,6}} --> (3,1)
  7. {{1,5}, {3,6}} --> (2,2)
  8. {{1,5}, {6,7}} --> (2,1,1)
  9. {{5,6}, {7,8}} --> (1,1,1,1)
Note that the partitions correspond to the bijection mentioned in the comments above.
		

Crossrefs

Bisection (even part) of A002513.
Cf. A000041.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(d*
          (2-irem(d, 2)), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 18 2018
  • Mathematica
    a[n_] := Sum[PartitionsP[2k] PartitionsP[n-k], {k, 0, n}];
    a /@ Range[0, 40] (* Jean-François Alcover, Nov 27 2020 *)
  • PARI
    a(n) = sum(i=0, n, numbpart(2*i)*numbpart(n-i)); \\ Michel Marcus, Aug 18 2018

Formula

a(n) = [x^2n] (Product_{i>=1} 1/(1-x^i))*(Product_{j>=1} 1/(1-x^(2j))).
a(n) = Sum_{i=0..n} b(2i)*b(n-i) where b(n) is the number of partitions of n (A000041).
a(n) = A002513(2n). - Alois P. Heinz, Aug 18 2018

A319457 a(n) = [x^n] Product_{k>=1} 1/((1 - x^k)*(1 - x^(2*k)))^n.

Original entry on oeis.org

1, 1, 7, 31, 175, 931, 5209, 29114, 165087, 940828, 5396777, 31090962, 179832625, 1043516371, 6072302726, 35420582431, 207051636799, 1212583329959, 7113193757656, 41788933655049, 245831162935825, 1447891754747672, 8537111315442222, 50387162650271055, 297664212003582753
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/((1 - x^k) (1 - x^(2 k)))^n , {k, 1, n}], {x, 0, n}], {n, 0, 24}]
    Table[SeriesCoefficient[1/(QPochhammer[x] QPochhammer[x^2])^n, {x, 0, n}], {n, 0, 24}]
    Table[SeriesCoefficient[Exp[n Sum[(4 DivisorSigma[1, k] - DivisorSigma[1, 2 k]) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 24}]

Formula

a(n) = [x^n] Product_{k>=1} (1 + x^k)^n/(1 - x^(2*k))^(2*n).
a(n) = [x^n] exp(n*Sum_{k>=1} (4*sigma(k) - sigma(2*k))*x^k/k).

A335602 Number of 3-regular cubic partitions of n.

Original entry on oeis.org

1, 1, 3, 3, 8, 9, 17, 20, 36, 43, 70, 84, 131, 158, 234, 284, 408, 495, 690, 837, 1143, 1385, 1852, 2241, 2952, 3565, 4626, 5574, 7150, 8595, 10903, 13074, 16434, 19656, 24494, 29223, 36146, 43016, 52836, 62722, 76572, 90675, 110063, 130021, 157014, 185049, 222388
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 - x^(3*k)) * (1 - x^(6*k)) / ((1 - x^k) * (1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 23 2020 *)
  • PARI
    seq(n)={my(A=O(x*x^n)); Vec(eta(x^3 + A)*eta(x^6 + A)/(eta(x + A)*eta(x^2 + A)))} \\ Andrew Howroyd, Jul 29 2020

Formula

G.f.: (f_3(x)*f_6(x)) / (f_1(x)*f_2(x)) where f_k(x) = Product_{m>=1} (1 - x^(m*k)).
a(n) ~ exp(sqrt(2*n/3)*Pi) / (6^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 23 2020

A335604 Number of 9-regular cubic partitions of n.

Original entry on oeis.org

1, 1, 3, 4, 9, 12, 23, 31, 54, 72, 117, 156, 242, 320, 477, 628, 909, 1188, 1676, 2178, 3012, 3888, 5283, 6780, 9079, 11582, 15309, 19424, 25389, 32040, 41462, 52063, 66780, 83448, 106182, 132084, 166862, 206660, 259359, 319896, 399069, 490272, 608234, 744444, 918864
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(9*k)) * (1 - x^(18*k)) / ((1 - x^k) * (1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 23 2020 *)
  • PARI
    seq(n)={my(A=O(x*x^n)); Vec(eta(x^9 + A)*eta(x^18 + A)/(eta(x + A)*eta(x^2 + A)))} \\ Andrew Howroyd, Jul 29 2020

Formula

G.f.: (f_9(x)*f_18(x)) / (f_1(x)*f_2(x)) where f_k(x) = Product_{m>=1} (1 - x^(m*k)).
a(n) ~ exp(2*sqrt(2*n)*Pi/3) / (2^(3/4) * 3^(5/2) * n^(3/4)). - Vaclav Kotesovec, Jun 23 2020
Previous Showing 11-20 of 20 results.