A029863
Expansion of Product_{k >= 1} 1/(1-x^k)^c(k), where c(1), c(2), ... = 2 3 2 3 2 3 2 3 ....
Original entry on oeis.org
1, 2, 6, 12, 27, 50, 98, 172, 310, 522, 888, 1444, 2357, 3724, 5882, 9072, 13957, 21082, 31732, 47072, 69545, 101540, 147620, 212516, 304631, 433054, 613030, 861616, 1206089, 1677766, 2324844, 3203748, 4398602, 6009390, 8181250
Offset: 0
G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 27*x^4 + 50*x^5 + 98*x^6 + 172*x^7 + ...
-
nmax = 50; CoefficientList[Series[Product[1/((1 + x^k)*(1 - x^k)^3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 20 2015 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (eta(x + A)^2 * eta(x^2 + A)), n))};
A262380
Expansion of Product_{k>=1} 1/((1+x^k)*(1-x^k)^4).
Original entry on oeis.org
1, 3, 10, 25, 62, 136, 293, 590, 1165, 2205, 4097, 7391, 13120, 22780, 38997, 65613, 109036, 178660, 289575, 463842, 735870, 1155717, 1799620, 2777795, 4254859, 6467115, 9761770, 14633605, 21799465, 32273399, 47506759, 69537814, 101252595, 146675875, 211451893
Offset: 0
-
nmax = 50; CoefficientList[Series[Product[1/((1 + x^k)*(1 - x^k)^4), {k, 1, nmax}], {x, 0, nmax}], x]
A318026
Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(3*k))).
Original entry on oeis.org
1, 1, 2, 4, 6, 9, 16, 22, 33, 50, 70, 98, 143, 193, 266, 368, 493, 659, 892, 1170, 1543, 2035, 2642, 3422, 4448, 5694, 7294, 9334, 11839, 14982, 18968, 23812, 29868, 37410, 46598, 57924, 71953, 88913, 109728, 135212, 165991, 203407, 248986, 303706, 369939, 449967, 545820, 661038, 799629
Offset: 0
a(4) = 6 because we have [4], [3, 1], [3', 1], [2, 2], [2, 1, 1] and [1, 1, 1, 1].
-
a:=series(mul(1/((1-x^k)*(1-x^(3*k))),k=1..55),x=0,49): seq(coeff(a,x,n),n=0..48); # Paolo P. Lava, Apr 02 2019
-
nmax = 48; CoefficientList[Series[Product[1/((1 - x^k) (1 - x^(3 k))), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 48; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^3]), {x, 0, nmax}], x]
nmax = 48; CoefficientList[Series[Exp[Sum[x^k (1 + x^k + 2 x^(2 k))/(k (1 - x^(3 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
Table[Sum[PartitionsP[k] PartitionsP[n - 3 k], {k, 0, n/3}], {n, 0, 48}]
A318027
Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(4*k))).
Original entry on oeis.org
1, 1, 2, 3, 6, 8, 13, 18, 29, 39, 57, 77, 112, 148, 205, 271, 372, 484, 647, 838, 1110, 1423, 1852, 2361, 3051, 3857, 4922, 6191, 7849, 9805, 12319, 15314, 19131, 23649, 29333, 36099, 44556, 54568, 66963, 81683, 99803, 121229, 147413, 178411, 216111, 260590, 314365, 377819, 454229
Offset: 0
a(5) = 8 because we have [5], [4, 1], [4', 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1] and [1, 1, 1, 1, 1].
-
a:=series(mul(1/((1-x^k)*(1-x^(4*k))),k=1..55),x=0,49): seq(coeff(a,x,n),n=0..48); # Paolo P. Lava, Apr 02 2019
-
nmax = 48; CoefficientList[Series[Product[1/((1 - x^k) (1 - x^(4 k))), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 48; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^4]), {x, 0, nmax}], x]
nmax = 48; CoefficientList[Series[Exp[Sum[x^k (1 + x^k + x^(2 k) + 2*x^(3 k))/(k (1 - x^(4 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
Table[Sum[PartitionsP[k] PartitionsP[n - 4 k], {k, 0, n/4}], {n, 0, 48}]
A318028
Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(5*k))).
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 12, 17, 25, 35, 51, 69, 96, 129, 175, 235, 312, 410, 539, 700, 913, 1173, 1508, 1923, 2450, 3105, 3920, 4926, 6177, 7710, 9614, 11923, 14766, 18218, 22435, 27550, 33750, 41231, 50278, 61150, 74259, 89932, 108744, 131193, 158025, 189979, 227998, 273125, 326692
Offset: 0
a(5) = 8 because we have [5], [5'], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1] and [1, 1, 1, 1, 1].
-
a:=series(mul(1/((1-x^k)*(1-x^(5*k))),k=1..55),x=0,49): seq(coeff(a,x,n),n=0..48); # Paolo P. Lava, Apr 02 2019
-
nmax = 48; CoefficientList[Series[Product[1/((1 - x^k) (1 - x^(5 k))), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 48; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^5]), {x, 0, nmax}], x]
nmax = 48; CoefficientList[Series[Exp[Sum[x^k (1 + x^k + x^(2 k) + x^(3 k) + 2 x^(4 k))/(k (1 - x^(5 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
Table[Sum[PartitionsP[k] PartitionsP[n - 5 k], {k, 0, n/5}], {n, 0, 48}]
A182031
Expansion of q^(-5/24) * (eta(q^3) * eta(q^6))^3 / (eta(q) * eta(q^2))^4 in powers of q.
Original entry on oeis.org
1, 4, 18, 53, 163, 414, 1059, 2431, 5553, 11844, 25013, 50391, 100362, 193136, 367371, 680705, 1247247, 2238408, 3975218, 6941384, 12003156, 20465599, 34581525, 57737205, 95601892, 156665029, 254777220, 410580026, 657015874
Offset: 0
1 + 4*x + 18*x^2 + 53*x^3 + 163*x^4 + 414*x^5 + 1059*x^6 + 2431*x^7 + ...
q^5 + 4*q^13 + 18*q^21 + 53*q^29 + 163*q^37 + 414*q^45 + 1059*q^53 + ...
- H.-C. Chan, On the Andrews-Schur proof of the Rogers-Ramanujan identities, Ramanujan J. 23 (2010), no. 1-3, 417-431. see p. 430 Theorem 7.
-
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-5/8)*(eta[q^3]*eta[q^6])^3/(eta[q]*eta[q^2])^4, {q, 0, 100}], q] (* G. C. Greubel, Apr 16 2018 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^6 + A))^3 / (eta(x + A) * eta(x^2 + A))^4, n))}
-
q='q+O('q^99); Vec((eta(q^3)*eta(q^6))^3/(eta(q)*eta(q^2))^4) \\ Altug Alkan, Apr 16 2018
A305168
Number of non-isomorphic graphs on 4n vertices whose edges are the union of two n-edge matchings.
Original entry on oeis.org
1, 3, 9, 23, 54, 118, 246, 489, 940, 1751, 3177, 5630, 9776, 16659, 27922, 46092, 75039, 120615, 191611, 301086, 468342, 721638, 1102113, 1669226, 2508429, 3741741, 5542532, 8155720, 11925654, 17334077, 25051940, 36009468, 51491111, 73263043, 103744575
Offset: 0
To see a(2)=9, observe that all graphs that are the union of two matchings of size n=2 are isomorphic to the union of S = {{1,2},{3,4}} and one of T=
1. {{1,2}, {3,4}} --> (2',2')
2. {{1,3}, {2,4}} --> (4')
3. {{1,5}, {3,4}} --> (2,2')
4. {{1,3}, {4,5}} --> (4)
5. {{1,2}, {5,6}} --> (1,1,2')
6. {{1,3}, {5,6}} --> (3,1)
7. {{1,5}, {3,6}} --> (2,2)
8. {{1,5}, {6,7}} --> (2,1,1)
9. {{5,6}, {7,8}} --> (1,1,1,1)
Note that the partitions correspond to the bijection mentioned in the comments above.
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(d*
(2-irem(d, 2)), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> b(2*n):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 18 2018
-
a[n_] := Sum[PartitionsP[2k] PartitionsP[n-k], {k, 0, n}];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 27 2020 *)
-
a(n) = sum(i=0, n, numbpart(2*i)*numbpart(n-i)); \\ Michel Marcus, Aug 18 2018
A319457
a(n) = [x^n] Product_{k>=1} 1/((1 - x^k)*(1 - x^(2*k)))^n.
Original entry on oeis.org
1, 1, 7, 31, 175, 931, 5209, 29114, 165087, 940828, 5396777, 31090962, 179832625, 1043516371, 6072302726, 35420582431, 207051636799, 1212583329959, 7113193757656, 41788933655049, 245831162935825, 1447891754747672, 8537111315442222, 50387162650271055, 297664212003582753
Offset: 0
-
Table[SeriesCoefficient[Product[1/((1 - x^k) (1 - x^(2 k)))^n , {k, 1, n}], {x, 0, n}], {n, 0, 24}]
Table[SeriesCoefficient[1/(QPochhammer[x] QPochhammer[x^2])^n, {x, 0, n}], {n, 0, 24}]
Table[SeriesCoefficient[Exp[n Sum[(4 DivisorSigma[1, k] - DivisorSigma[1, 2 k]) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 24}]
A335602
Number of 3-regular cubic partitions of n.
Original entry on oeis.org
1, 1, 3, 3, 8, 9, 17, 20, 36, 43, 70, 84, 131, 158, 234, 284, 408, 495, 690, 837, 1143, 1385, 1852, 2241, 2952, 3565, 4626, 5574, 7150, 8595, 10903, 13074, 16434, 19656, 24494, 29223, 36146, 43016, 52836, 62722, 76572, 90675, 110063, 130021, 157014, 185049, 222388
Offset: 0
- H.-C. Chan, Ramanujan's cubic continued fraction and a generalization of his "most beautiful identity", Int. J. Number Theory 6 (2010), 673--680.
- H.-C. Chan, Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function, Int. J. Number Theory 6 (2010), 819--834.
- S. Chern, Arithmetic Properties for Cubic Partition Pairs Modulo Powers of 3, Acta. Math. Sin.-English Ser. 2017 33: 1504.
- D. S. Gireesh and M. S. Mahadeva Naika, General family of congruences modulo large powers of 3 for cubic partition pairs, New Zealand J. Math. 47 (2017), 43--56.
-
nmax = 20; CoefficientList[Series[Product[(1 - x^(3*k)) * (1 - x^(6*k)) / ((1 - x^k) * (1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 23 2020 *)
-
seq(n)={my(A=O(x*x^n)); Vec(eta(x^3 + A)*eta(x^6 + A)/(eta(x + A)*eta(x^2 + A)))} \\ Andrew Howroyd, Jul 29 2020
A335604
Number of 9-regular cubic partitions of n.
Original entry on oeis.org
1, 1, 3, 4, 9, 12, 23, 31, 54, 72, 117, 156, 242, 320, 477, 628, 909, 1188, 1676, 2178, 3012, 3888, 5283, 6780, 9079, 11582, 15309, 19424, 25389, 32040, 41462, 52063, 66780, 83448, 106182, 132084, 166862, 206660, 259359, 319896, 399069, 490272, 608234, 744444, 918864
Offset: 0
- Hei-Chi Chan, Ramanujan's cubic continued fraction and a generalization of his "most beautiful identity", Int. J. Number Theory 6 (2010), 673--680.
- Hei-Chi Chan, Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function, Int. J. Number Theory 6 (2010), 819--834.
- S. Chern, Arithmetic Properties for Cubic Partition Pairs Modulo Powers of 3, Acta. Math. Sin.-English Ser. 2017 33: 1504.
- Bernard L. S. Lin, Congruences modulo 27 for cubic partition pairs, J. Number Theory 171 (2017), 31--42.
-
nmax = 50; CoefficientList[Series[Product[(1 - x^(9*k)) * (1 - x^(18*k)) / ((1 - x^k) * (1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 23 2020 *)
-
seq(n)={my(A=O(x*x^n)); Vec(eta(x^9 + A)*eta(x^18 + A)/(eta(x + A)*eta(x^2 + A)))} \\ Andrew Howroyd, Jul 29 2020
Comments