cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A002946 Continued fraction for cube root of 3.

Original entry on oeis.org

1, 2, 3, 1, 4, 1, 5, 1, 1, 6, 2, 5, 8, 3, 3, 4, 2, 6, 4, 4, 1, 3, 2, 3, 4, 1, 4, 9, 1, 8, 4, 3, 1, 3, 2, 6, 1, 6, 1, 3, 1, 1, 1, 1, 12, 3, 1, 3, 1, 1, 4, 1, 6, 1, 5, 1, 2, 1, 3, 3, 11, 8, 1, 139, 8, 2, 8, 5, 1, 2, 2, 2, 2, 3, 1, 1, 2, 1, 1, 1, 52, 2, 46, 2, 2, 3
Offset: 0

Views

Author

Keywords

Examples

			3^(1/3) = 1.44224957030740838... = 1 + 1/(2 + 1/(3 + 1/(1 + 1/(4 + ...)))). - _Harry J. Smith_, May 08 2009
		

References

  • H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002581 (decimal expansion).
Cf. A002353, A002354 (convergents).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ContinuedFraction(3^(1/3)); // G. C. Greubel, Nov 02 2018
  • Maple
    with(numtheory): cfrac(3^(1/3),80,'quotients'); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    ContinuedFraction[Power[3, (3)^-1],120] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(3^(1/3)); for (n=1, 20000, write("b002946.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 08 2009
    

Extensions

Offset changed by Andrew Howroyd, Jul 04 2024

A243406 Decimal expansion of 8^(1/sqrt(8)).

Original entry on oeis.org

2, 0, 8, 5, 8, 8, 5, 7, 9, 6, 7, 5, 9, 9, 0, 6, 5, 5, 2, 8, 8, 9, 0, 4, 0, 8, 7, 0, 1, 4, 2, 9, 7, 0, 4, 5, 6, 6, 5, 6, 0, 3, 3, 2, 0, 3, 6, 9, 5, 8, 3, 8, 5, 1, 2, 7, 1, 6, 0, 0, 6, 8, 4, 7, 2, 0, 0, 9, 4, 4, 0, 4, 0, 9, 4, 1, 1, 4, 4, 4, 9, 7, 9, 4, 4, 6, 9, 3, 9, 3, 6, 0, 4, 4, 3, 3, 8, 7, 5, 2, 2, 5, 4, 8, 3
Offset: 1

Views

Author

Stanislav Sykora, Jun 05 2014

Keywords

Examples

			2.0858857967599065528890408701429704566560332036958385127160...
		

Crossrefs

Cf. A002581, A243443 (k=7), A243444 (k=6).

Programs

  • Mathematica
    RealDigits[8^(1/Sqrt[8]),10,120][[1]] (* Harvey P. Dale, Nov 05 2019 *)
  • PARI
    default(realprecision,20080);8.0^(1.0/sqrt(8.0));

A243443 Decimal expansion of 7^(1/sqrt(7)).

Original entry on oeis.org

2, 0, 8, 6, 4, 9, 3, 4, 9, 6, 3, 0, 9, 3, 6, 4, 4, 2, 3, 1, 9, 1, 0, 1, 2, 0, 7, 8, 3, 3, 1, 8, 7, 4, 6, 4, 4, 7, 5, 9, 9, 1, 7, 8, 7, 1, 1, 8, 2, 4, 7, 7, 0, 4, 4, 3, 1, 1, 4, 8, 3, 4, 0, 3, 0, 7, 7, 1, 7, 6, 2, 4, 6, 5, 9, 9, 9, 6, 9, 6, 8, 9, 1, 7, 8, 2, 2, 6, 9, 7, 7, 1, 8, 1, 3, 1, 8, 9, 5, 0, 7, 0, 3, 4, 5
Offset: 1

Views

Author

Stanislav Sykora, Jun 05 2014

Keywords

Comments

The largest k^(1/sqrt(k)), for any natural number k, which occurs for k = 7 = A000227(2).

Examples

			2.086493496309364423191012078331874644759917871182477044311483403077176...
		

Crossrefs

Cf. A002581, A243406 (k=8), A243444 (k=6).

Programs

  • Mathematica
    RealDigits[7^(1/Sqrt[7]),10,120][[1]] (* Harvey P. Dale, Aug 17 2024 *)
  • PARI
    default(realprecision, 20080); 7.0^(1.0/sqrt(7.0));

A166928 Decimal expansion of smaller solution to 3^x = x^3.

Original entry on oeis.org

2, 4, 7, 8, 0, 5, 2, 6, 8, 0, 2, 8, 8, 3, 0, 2, 4, 1, 1, 8, 9, 3, 7, 3, 6, 5, 1, 6, 8, 9, 4, 6, 9, 0, 3, 0, 7, 8, 6, 8, 1, 4, 2, 3, 1, 2, 6, 8, 9, 0, 9, 9, 1, 6, 3, 5, 9, 1, 2, 6, 3, 8, 1, 0, 0, 8, 7, 1, 1, 2, 5, 2, 2, 1, 6, 7, 0, 1, 4, 6, 4, 0, 5, 1, 4, 7, 3, 2, 1, 8, 3, 4, 8, 6, 9, 3, 6, 6, 9, 3, 6, 9, 2, 0, 1
Offset: 1

Views

Author

Keywords

Comments

The larger solution is of course 3.
Also, the limit of infinite tetration a^a^...^a of a=3^(1/3) (=A002581), i.e., lim_{n->oo} x(n) where x(n+1)=a^x(n), x(1)=a. - M. F. Hasler, Nov 03 2013
The constant is transcendental (Vassilev-Missana, p. 23). - Peter Bala, Jan 01 2014

Examples

			2.47805268028830241189373651689...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ -3*ProductLog[ -Log[3]/3 ] / Log[3], 10, 105] // First (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    solve(x=2,exp(1),3^x-x^3)

A210706 Numbers k such that floor[ 3^(1/3)*10^k ] is prime.

Original entry on oeis.org

23, 80, 2487
Offset: 1

Views

Author

M. F. Hasler, Aug 31 2013

Keywords

Comments

Inspired by prime curios about 4957 (cf. LINKS), one of which honors the late Bruce Murray (Nov 30 1931 - Aug 29 2013).
Meant to be a "condensed" version of A210704, see there for more.
Alternate definition: Numbers k such that concatenation of the first (k+1) digits of A002581 yields a prime.

Examples

			t = 3^(1/3) = 1.44224957030740838232163831... multiplied by 10^23 yields
t*10^23 = 144224957030740838232163.831..., the integer part of which is the prime A210704(1), therefore a(1)=23.
		

Crossrefs

Cf. A002581 = decimal expansion of 3^(1/3).
Cf. A065815 (analog for gamma), A060421 (1+ analog for Pi), A064118 (1+ analog for exp(1)), A119344 (1 + analog for sqrt(3)), A136583 (1+ analog for sqrt(10)).

Programs

  • PARI
    \p2999
    t=sqrtn(3,3);for(i=1,2999,ispseudoprime(t\.1^i)&print1(i","))

Formula

a(n) = (length of A210704(n)) - 1, where "length" means number of decimal digits.

A243405 Minimum among the numbers p^(n/p), where p is a prime factor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 16, 27, 25, 11, 64, 13, 49, 125, 256, 17, 512, 19, 625, 343, 121, 23, 4096, 3125, 169, 19683, 2401, 29, 15625, 31, 65536, 1331, 289, 16807, 262144, 37, 361, 2197, 390625, 41, 117649, 43, 14641, 1953125, 529, 47, 16777216, 823543, 9765625, 4913, 28561, 53
Offset: 1

Views

Author

Stanislav Sykora, Jun 04 2014

Keywords

Comments

The setting a(1)=1 is conventional.
Upper bound (for any n): a(n) <= (3^(1/3))^n = A002581^n.

Examples

			a(12)=64 because 2^(12/2)=64 is smaller than 3^(12/3)=81.
		

Crossrefs

Cf. A002581, A092975 (maximum instead of minimum), A033845.

Programs

  • PARI
    A243405(n)= {my(m,k,p,q);if(n==1,return(1));
      p=factor(n);m=2^n;
      for(k=1,#p[,1],q=p[k,1]^(n\p[k,1]);if(q
    				

Formula

For prime p, a(p)=p.
For n>1: When gpf(n)>3 then a(n)=gpf(n)^(n/gpf(n)); otherwise if n is even then a(n)=2^(n/2); otherwise a(n)=3^(n/3).
If n is in A033845, a(n) = 2^(n/2); otherwise a(n) = gpf(n)^(n/gpf(n)). - Franklin T. Adams-Watters, Jun 15 2014

A319034 Decimal expansion of the height that minimizes the total surface area of the four triangular faces of a square pyramid of unit volume.

Original entry on oeis.org

1, 1, 4, 4, 7, 1, 4, 2, 4, 2, 5, 5, 3, 3, 3, 1, 8, 6, 7, 8, 0, 8, 0, 4, 2, 2, 1, 1, 9, 3, 9, 6, 7, 7, 0, 0, 8, 9, 1, 5, 9, 0, 6, 9, 2, 0, 7, 8, 7, 9, 3, 1, 0, 7, 2, 0, 9, 9, 0, 5, 2, 1, 7, 4, 0, 6, 5, 6, 7, 4, 2, 9, 9, 0, 2, 4, 2, 1, 4, 1, 5, 0, 4, 3, 7, 6, 0, 8, 1, 6, 1, 0, 3, 0, 9, 1, 7, 0, 4, 5
Offset: 1

Views

Author

Jon E. Schoenfield, Oct 22 2018

Keywords

Comments

A square pyramid with a height of h and a base of size s X s has volume V = (1/3)*s^2*h, so a square pyramid of unit volume has s = sqrt(3/h), and the slant height of each of the four triangular faces is t = sqrt(h^2 + (s/2)^2) = sqrt(h^2 + 3/(4*h)), and the total area of the four faces is A = 4*(s*t/2) = sqrt(12*h^3 + 9)/h; this area is minimized at h = (3/2)^(1/3), where it reaches A = 3^(7/6)*2^(1/3).
If the total surface area of all five faces including the square base is to be minimized, then the resulting height is 6^(1/3) (cf. A005486). - Jon E. Schoenfield, Nov 11 2018

Examples

			1.14471424255333186780804221193967700891590692078793...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Surd[3/2, 3], 10, 120][[1]] (* Amiram Eldar, Jun 21 2023 *)
  • PARI
    sqrtn(3/2, 3) \\ Michel Marcus, Oct 23 2018

Formula

Equals (3/2)^(1/3) = (1/2)*A010584.
Equals A002581/A002580. - Michel Marcus, Oct 23 2018

A010648 Decimal expansion of cube root of 78.

Original entry on oeis.org

4, 2, 7, 2, 6, 5, 8, 6, 8, 1, 6, 9, 7, 9, 1, 6, 8, 2, 4, 9, 8, 7, 7, 2, 8, 5, 2, 9, 2, 4, 2, 4, 9, 0, 8, 5, 8, 9, 1, 6, 7, 0, 8, 8, 8, 0, 1, 5, 4, 8, 7, 2, 9, 0, 7, 1, 0, 7, 8, 5, 5, 2, 3, 0, 1, 9, 1, 7, 9, 2, 2, 7, 1, 6, 3, 6, 6, 2, 5, 3, 3, 7, 2, 2, 6, 9, 7, 3, 4, 1, 1, 5, 6, 0, 0, 5, 1, 8, 4
Offset: 1

Views

Author

Keywords

Programs

Formula

Equals A005486*A010585 = A002581*A010598. [Bruno Berselli, Mar 29 2013]

A210973 Decimal expansion of cube root of (3/4).

Original entry on oeis.org

9, 0, 8, 5, 6, 0, 2, 9, 6, 4, 1, 6, 0, 6, 9, 8, 2, 9, 4, 4, 5, 6, 0, 5, 8, 7, 8, 1, 6, 3, 6, 3, 0, 2, 5, 1, 2, 1, 4, 1, 0, 5, 2, 3, 1, 5, 7, 0, 6, 0, 9, 8, 3, 5, 7, 4, 0, 6, 6, 7, 1, 4, 8, 9, 6, 5, 6, 5, 4, 8, 6, 9, 7, 2, 9
Offset: 0

Views

Author

Omar E. Pol, Aug 09 2012

Keywords

Comments

Radius of a sphere with volume Pi.

Examples

			0.908560296416069829445605878... =  A002581 / A005480.
		

Crossrefs

Cube root of A152627.
Cf. A005486.

Programs

Formula

(3/4)^(1/3).

A251735 Decimal expansion of Sum_{n>=1} (-1)^(n+1)/n^(1/3).

Original entry on oeis.org

5, 7, 1, 7, 5, 2, 8, 3, 3, 8, 2, 5, 2, 7, 7, 6, 6, 4, 9, 3, 6, 4, 7, 5, 6, 8, 1, 1, 3, 6, 0, 3, 2, 6, 5, 5, 2, 4, 3, 1, 4, 8, 1, 5, 7, 4, 7, 3, 2, 5, 4, 1, 1, 5, 8, 0, 6, 1, 4, 7, 5, 0, 8, 2, 8, 0, 3, 1, 8, 4, 9, 1, 1, 9, 3, 9, 9, 3
Offset: 0

Views

Author

R. J. Mathar, Dec 07 2014

Keywords

Comments

Cubic root analog of A113024.

Examples

			0.57175283382527766493...
		

Crossrefs

Programs

  • Maple
    Zeta(1/3)*(1-root[3](4)) ; evalf(%) ;
  • Mathematica
    RealDigits[-Zeta[1/3]*(4^(1/3) - 1), 10, 100][[1]] (* G. C. Greubel, Apr 15 2018 *)
  • PARI
    -zeta(1/3)*(4^(1/3)-1) \\ Charles R Greathouse IV, Apr 20 2016

Formula

Equals 1 - 1/A002580 + 1/A002581 - 1/A005480 + ... = A251734 *(1 - A005480).
Previous Showing 11-20 of 24 results. Next