cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A001795 Coefficients of Legendre polynomials.

Original entry on oeis.org

1, 1, 7, 33, 715, 4199, 52003, 334305, 17678835, 119409675, 1641030105, 11435320455, 322476036831, 2295919134019, 32968493968795, 238436656380769, 27767032438524099, 203236010537432691, 2989949596465113373
Offset: 0

Views

Author

Keywords

Comments

Numerators in expansion of sqrt(c(x)), c(x) the g.f. of A000108. - Paul Barry, Jul 12 2005
Coefficient of Legendre_0(x) when x^n is written in term of Legendre polynomials. - Michel Marcus, May 28 2013

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Divisor of A048990 and A065097.
Apparently a bisection of A002596.
Bisection of A099024.

Programs

  • Magma
    A001795:= func< n | Numerator(Catalan(2*n)/4^n) >;
    [A001795(n): n in [0..25]]; // G. C. Greubel, Apr 22 2025
    
  • Mathematica
    Table[Numerator[CatalanNumber[2*n]/4^n], {n,0,30}] (* G. C. Greubel, Apr 22 2025 *)
  • PARI
    my(x='x+O('x^30)); apply(numerator, Vec(((1-sqrt(1-4*x))/(2*x))^(1/2))) \\ Michel Marcus, Feb 04 2022
    
  • PARI
    a(n)=numerator(binomial(2*n-1/2, n)/(2*n+1)) \\ Tani Akinari, Oct 22 2024
    
  • SageMath
    def A001795(n): return numerator(catalan_number(2*n)/4^n)
    print([A001795(n) for n in range(31)]) # G. C. Greubel, Apr 22 2025

Formula

1/(sqrt(1-x) + sqrt(1+x)) = Sum_{n>=0} (a(n)/b(n))*x^(2*n) where b(n) is a power of 2. - Benoit Cloitre, Mar 12 2002
For n >= 1, 2^(n+1)*a(2^(n-1)) = A001791(2^n). - Vladimir Shevelev, Sep 05 2010
a(n) = numerator(binomial(2*n-1/2, n)/(2*n+1)). - Tani Akinari, Oct 22 2024
a(n) = numerator( A000108(2*n)/4^n ). - G. C. Greubel, Apr 22 2025

Extensions

More terms from Benoit Cloitre, Mar 12 2002

A224270 Absolute values of the numerators of the third column of ( 0 followed by (interleave 0 , A001803(n))/A060818(n) ) and its successive differences.

Original entry on oeis.org

1, 1, 5, 11, 95, 203, 861, 1815, 30459, 63635, 264979, 550069, 4555915, 9412543, 38816525, 79898895, 2627302995, 5392044675, 22104436695, 45256266825, 370241638305, 756514878405, 3088866211275, 6300861570705, 102746354288175, 209286947903319
Offset: 0

Views

Author

Paul Curtz, Apr 02 2013

Keywords

Comments

The array is
0, 0, 1, 0, 3/2, 0, 15/8, 0,...
0, 1, -1, 3/2, -3/2, 15/8, -15/8,...
1, -2, 5/2, -3, 27/8, -15/4,...
-3, 9/2, -11/2, 51/8, -57/8,...
15/2, -10, 95/8, -27/2,...
-35/2, 175/8, -203/8,...
315/8, -189/4,...
-693/8,...
Note A001803 in the first column and a variant of A206771(n) in the second column.
Now consider a(n)/A046161(n) and its differences:
1, 1/2, 5/8, 11/16, 95/128, 203/256, 861/1024,...
-1/2, 1/8, 1/16, 7/128, 13/256, 49/1024,... =b(n)/A046161(n)
5/8, -1/16, -1/128, -1/256, -3/1024,...
-11/16, 7/128, 1/256, 1/1024,...
95/128, -13/256, -3/1024,...
-203/256, 49/1024,...
861/1024,...
This an autosequence of second kind. The first column is the signed sequence.
(Its companion, the corresponding autosequence of first kind, is 0, 1, 1, 9/8, 5/4,... in A206771).
Main diagonal: 1, 1/8, -1/128,... = A002596(n)/A061549(n) ?
b(n) = a(n+1) - A171977*a(n). Also for two successive rows (with shifted A171977).

Examples

			a(n)=numerators of 0+1=1, 0+1/2=1/2, 1/4+3/8=5/8, 3/8+5/16=11/16, 15/32+35/128=95/128,... .
		

Crossrefs

Programs

  • Mathematica
    nmax = 25; t1 = Table[ Numerator[ (2*n+1)*(Binomial[2*n, n]/4^n)] / Denominator[ Binomial[2*n, n]/4^n], {n, 0, Ceiling[nmax/2]}]; t2 = Join[{0}, Table[ If[ OddQ[n], 0, t1[[n/2]] ], {n, 1, nmax+2}] ]; t3 = Table[ Differences[t2, n], {n, 0, nmax}]; t3[[All, 3]] // Numerator // Abs (* Jean-François Alcover, Apr 02 2013 *)

Formula

Numerators of (0, 0 followed by A001803(n)/(4*A046161(n))) + A001790(n)/A046161(n).

Extensions

More terms from Jean-François Alcover, Apr 02 2013

A273193 Numerators of the nonzero coefficients in the expansion of 1/hypergeom([Seq_{k=1..m-1} k/m], [], (x/m)^m) for m = 3.

Original entry on oeis.org

1, 2, -16, 904, -25792, 971936, -135875584, 7531512832, -483853915136, 318210896625152, -26070230641872896, 2367374418301892608, -708155254090757373952, 76928188353501090512896, -9044296958948501037252608, 3432739126498593173574909952, -465041552940366454298747600896
Offset: 0

Views

Author

Peter Luschny, Jun 06 2016

Keywords

Crossrefs

Cf. A000012 (m=1), A002596 (m=2), A273192, A273194.

Programs

  • Maple
    Blist := proc(m, size) local H, S;
    H := m -> hypergeom([seq(k/m, k=1..m-1)], [], (x/m)^m);
    S := m -> series(1/H(m), x, (m+1)*size);
    seq((-1)^n*numer(coeff(S(m), x, m*n)), n=0..size) end:
    A273193_list := size -> Blist(3, size);

A364660 Numerators of coefficients in expansion of (1 + x)^(1/4).

Original entry on oeis.org

1, 1, -3, 7, -77, 231, -1463, 4807, -129789, 447051, -3129357, 11094993, -159028233, 574948227, -4188908511, 15359331207, -906200541213, 3358272593907, -25000473754641, 93422822977869, -1401342344668035, 5271716439465465, -39777496770512145, 150462705175415505, -4564035390320936985
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2023

Keywords

Examples

			(1 + x)^(1/4) = 1 + x/4 - 3*x^2/32 + 7*x^3/128 - 77*x^4/2048 + 231*x^5/8192 - 1463*x^6/65536 + ...
Coefficients are 1, 1/4, -3/32, 7/128, -77/2048, 231/8192, -1463/65536, ...
		

Crossrefs

Denominators are A088802, A123854.

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[(1 + x)^(1/4), {x, 0, nmax}], x] // Numerator
    Table[Binomial[1/4, n], {n, 0, 24}] // Numerator
  • PARI
    my(x='x+O('x^30)); apply(numerator, Vec((1 + x)^(1/4))) \\ Michel Marcus, Aug 02 2023

A364661 Numerators of coefficients in expansion of (1 + x)^(3/4).

Original entry on oeis.org

1, 3, -3, 5, -45, 117, -663, 1989, -49725, 160225, -1057485, 3556995, -48612265, 168273225, -1177912575, 4161957765, -237231592605, 851242773465, -6147864475025, 22326455198775, -325966245902115, 1195209568307755, -8801088639357105, 32525762362841475, -964930950097630425
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2023

Keywords

Examples

			(1 + x)^(3/4) = 1 + 3*x/4 - 3*x^2/32 + 5*x^3/128 - 45*x^4/2048 + 117*x^5/8192 - 663*x^6/65536 + ...
Coefficients are 1, 3/4, -3/32, 5/128, -45/2048, 117/8192, -663/65536, ...
		

Crossrefs

Denominators are A088802, A123854.

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[(1 + x)^(3/4), {x, 0, nmax}], x] // Numerator
    Table[Binomial[3/4, n], {n, 0, 24}] // Numerator
  • PARI
    my(x='x+O('x^30)); apply(numerator, Vec((1 + x)^(3/4))) \\ Michel Marcus, Aug 02 2023

A364658 Numerators of coefficients in expansion of (1 + x)^(2/3).

Original entry on oeis.org

1, 2, -1, 4, -7, 14, -91, 208, -494, 10868, -27170, 69160, -535990, 1401820, -3704810, 29638480, -79653415, 215532770, -5280552865, 14452039420, -39743108405, 329300041070, -913059204785, 2540686482880, -21278249294120, 59579098023536, -167279775219928, 12713262916714528
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2023

Keywords

Examples

			(1 + x)^(2/3) = 1 + 2*x/3 - x^2/9 + 4*x^3/81 - 7*x^4/243 + 14*x^5/729 - 91*x^6/6561 + ...
Coefficients are 1, 2/3, -1/9, 4/81, -7/243, 14/729, -91/6561, ...
		

Crossrefs

Denominators are A067623.

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[(1 + x)^(2/3), {x, 0, nmax}], x] // Numerator
    Table[Binomial[2/3, n], {n, 0, 27}] // Numerator
  • PARI
    my(x='x+O('x^30)); apply(numerator, Vec((1 + x)^(2/3))) \\ Michel Marcus, Aug 02 2023

A381059 Array read by ascending antidiagonals: A(n,k) = numerator(binomial(n-1/2,k)) with k >=0.

Original entry on oeis.org

1, 1, -1, 1, 1, 3, 1, 3, -1, -5, 1, 5, 3, 1, 35, 1, 7, 15, -1, -5, -63, 1, 9, 35, 5, 3, 7, 231, 1, 11, 63, 35, -5, -3, -21, -429, 1, 13, 99, 105, 35, 3, 7, 33, 6435, 1, 15, 143, 231, 315, -7, -5, -9, -429, -12155, 1, 17, 195, 429, 1155, 63, 7, 5, 99, 715, 46189
Offset: 0

Views

Author

Stefano Spezia, Feb 12 2025

Keywords

Comments

Numerators of the binomial coefficients for half-integers. The denominators are given by the absolute values of A173755.

Examples

			The array of the binomial coefficients for half-integers begins as:
  1, -1/2,  3/8,  -5/16,   35/128, -63/256, ...
  1,  1/2, -1/8,   1/16,   -5/128,   7/256, ...
  1,  3/2,  3/8,  -1/16,    3/128,  -3/256, ...
  1,  5/2, 15/8,   5/16,   -5/128,   3/256, ...
  1,  7/2, 35/8,  35/16,   35/128,  -7/256, ...
  1,  9/2, 63/8, 105/16,  315/128,  63/256, ...
  1, 11/2, 99/8, 231/16, 1155/128, 693/256, ...
  ...
		

Crossrefs

Columns k=0..1 give A000012, A060747.
Row n=1 gives A002596.
Main diagonal gives A001790.

Programs

  • Mathematica
    A[n_,k_]:=Numerator[Binomial[n-1/2,k]]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
    A[n_,k_]:=Numerator[(2n-1)!!/((2(n-k)-1)!!2^k k!)]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

A(n,k) = numerator((2*n - 1)!!/((2*(n - k) - 1)!!*2^k*k!)).
A(n,2) = A000466(n-1) for n > 0.
A(n,3) = A162540(n-3) for n > 3.
A(0,n) = (-1)^n*A001790(n).
abs(A(2,n)) = abs(A161200(n)).
abs(A(3,n)) = abs(A161202(n)).

A002461 Coefficients of Legendre polynomials.

Original entry on oeis.org

1, 3, 20, 35, 126, 231, 3432, 6435, 24310, 46189, 352716, 676039, 2600150, 5014575, 155117520, 300540195, 1166803110, 2268783825, 17672631900, 34461632205, 134564468610, 263012370465, 4116715363800, 8061900920775, 31602651609438, 61989816618513, 486734856412028
Offset: 2

Views

Author

Keywords

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 362.
  • G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • PARI
    a(n) = if (n==2, 1, n*abs(numerator((1/(1-2*n))*binomial(2*n,n)/(4^n)))); \\ Michel Marcus, Feb 02 2015

Formula

1 if n=2, n * |A002596(n)| else. - Ralf Stephan, Sep 01 2003

Extensions

More terms from Michel Marcus, Feb 02 2015

A186642 Decimal expansion of the "squircle" perimeter.

Original entry on oeis.org

7, 0, 1, 7, 6, 9, 7, 9, 4, 3, 5, 6, 4, 0, 4, 1, 6, 4, 7, 1, 0, 6, 4, 9, 4, 1, 6, 3, 9, 3, 1, 8, 1, 1, 6, 9, 3, 9, 8, 0, 0, 8, 7, 5, 0, 4, 9, 7, 2, 4, 4, 9, 3, 4, 3, 2, 2, 8, 8, 6, 1, 0, 3, 5, 6, 0, 7, 3, 9, 2, 2, 1, 1, 6, 1, 8, 1, 8, 8, 8, 3, 5, 1, 3, 2, 3, 8, 8, 3, 9, 3, 0, 0, 5, 0, 3, 4, 0, 7, 1
Offset: 1

Views

Author

Jean-François Alcover, Feb 25 2011

Keywords

Comments

This squircle constant can also be computed as a series in terms of incomplete beta function with coefficients from sequences A002596 and A120777:
a(n) = (-1)^(n+1) numerator((2n-3)!!/n!) ( sequence A002596);
b(n) = denominator(binomial(2n+2, n+1)/2^(2n+1)) ( sequence A120777).
Generic term:
u(n) = (a(n)/b(n-1))*beta(1/2, (6n+1)/4, 1-(3/2)*n).
Here is the series computed up to 5 terms:
4*2^(3/4) + sum(u(n), {n, 1, 5}) =
4*2^(3/4) + beta(1/2, 7/4, -1/2) - (1/4)*beta(1/2, 13/4, -2) + (1/8)* beta(1/2, 19/4, -7/2) - (5/64)*beta(1/2, 25/4, -5) + (7/128)*beta(1/2, 31/4, -13/2).
It evaluates to 7.018901897260651...
Numeric check with 10000 terms:
4*2^(3/4) + sum(u(n), {n, 1, 10000}) = 7.017697943556135...

Examples

			7.01769794356404...
		

Crossrefs

Cf. A175576 (unit squircle area).

Programs

  • Mathematica
    First @ RealDigits[N[2*Integrate[Sqrt[1 + x^(3/2)/(1 - x)^(3/2)]/x^(3/4), {x, 0, 1/2}], 100]]
    (* This other series formula gives 100 correct digits: *)
    First @ RealDigits[1/Sqrt[Pi]*NSum[(-1)^(n+1)*Gamma[n - 1/2]*Beta[1/2, (6n + 1)/4, 1 - (3/2)n] / n!, {n, 0, Infinity},WorkingPrecision -> 100, Method -> "AlternatingSigns"], 10, 100]

Formula

-((3^(1/4) MeijerG[{{1/3, 2/3, 5/6, 1, 4/3}, {}}, {{1/12, 5/12, 7/12, 3/4, 13/12}, {}}, 1])/(16 Sqrt[2] Pi^(7/2) Gamma[5/4])). - Eric W. Weisstein, Oct 25 2011

A364713 a(n) is the numerator of coefficient of x^n in expansion of (1 + x)^(1/n).

Original entry on oeis.org

1, -1, 5, -77, 399, -124729, 81549, -23960365, 283583443, -478398640447, 19740912828, -11911591259019739, 18262332208600, -4514446693068714225, 142267808222130386191, -1912831808055538077885, 39773048560156838355, -43025628065750129034887540875, 86435429204640847578555
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 04 2023

Keywords

Examples

			1, -1/8, 5/81, -77/2048, 399/15625, -124729/6718464, 81549/5764801, ...
		

Crossrefs

Denominators are A145921.

Programs

  • Mathematica
    Table[SeriesCoefficient[(1 + x)^(1/n), {x, 0, n}], {n, 1, 21}] // Numerator
    Table[Binomial[1/n, n], {n, 1, 21}] // Numerator
  • PARI
    a(n) = numerator(binomial(1/n, n)); \\ Michel Marcus, Aug 05 2023
Previous Showing 11-20 of 20 results.