cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 135 results. Next

A102591 a(n) = Sum_{k=0..n} binomial(2n+1, 2k)*3^(n-k).

Original entry on oeis.org

1, 6, 44, 328, 2448, 18272, 136384, 1017984, 7598336, 56714752, 423324672, 3159738368, 23584608256, 176037912576, 1313964867584, 9807567290368, 73204678852608, 546407161659392, 4078438577864704, 30441879976280064
Offset: 0

Views

Author

Paul Barry, Jan 22 2005

Keywords

Comments

In general, Sum_{k=0..n} binomial(2n+1,2k)*r^(n-k) has g.f. (1-(r-1)x)/(1-2(r+1)+(r-1)^2x^2) and a(n) = ((sqrt(r)-1)^(2n+1) + (sqrt(r)+1)^(2n+1))/(2*sqrt(r)).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8,-4},{1,6},20] (* Harvey P. Dale, Sep 28 2021 *)

Formula

G.f.: (1-2x)/(1-8x+4x^2);
a(n) = 8*a(n-1) - 4*a(n-2);
a(n) = sqrt(3)*(sqrt(3)-1)^(2n+1)/6 + sqrt(3)*(sqrt(3)+1)^(2n+1)/6.
a(n) = 2^n*A079935(n). - R. J. Mathar, Sep 20 2012
a(n) = 2^(2*n+1)*Sum_{k >= n} binomial(2*k,2*n)*(1/3)^(k+1). Cf. A099156. - Peter Bala, Nov 29 2021
3*a(n)^2 = A107903(n)^2 + 2^(2*n+1). - Philippe Deléham, Mar 21 2023

A108898 a(n+3) = 3*a(n+2) - 2*a(n), a(0) = -1, a(1) = 1, a(2) = 3.

Original entry on oeis.org

-1, 1, 3, 11, 31, 87, 239, 655, 1791, 4895, 13375, 36543, 99839, 272767, 745215, 2035967, 5562367, 15196671, 41518079, 113429503, 309895167, 846649343, 2313089023, 6319476735, 17265131519, 47169216511, 128868696063, 352075825151, 961889042431, 2627929735167, 7179637555199
Offset: 0

Views

Author

Creighton Dement, Jul 16 2005

Keywords

Comments

In reference to the program code, "ibasek" corresponds to the floretion 'ik'. Sequences in this same batch are "kbase" = A005665 (Tower of Hanoi with cyclic moves only.) and "ibase" = A077846.

Crossrefs

Programs

  • Haskell
    a108898 n = a108898_list !! n
    a108898_list = -1 : 1 : 3 :
       zipWith (-) (map (* 3) $ drop 2 a108898_list) (map (* 2) a108898_list)
    -- Reinhard Zumkeller, Oct 15 2011
    
  • Maple
    seriestolist(series((-1+4*x)/((x-1)*(2*x^2+2*x-1)), x=0,31)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2ibaseksumseq[A*B] with A = + 'i + 'ii' + 'ij' + 'ik' and B = + .5'i + .5'j - .5'k + .5i' - .5j' + .5k' + .5'ij' + .5'ik' - .5'ji' - .5'ki'; Sumtype is set to:sum[(Y[0], Y[1], Y[2]),mod(3)
  • Mathematica
    LinearRecurrence[{3, 0, -2}, {-1, 1, 3}, 40] (* Paolo Xausa, Aug 21 2024 *)
  • PARI
    Vec(-(1 - 4*x) / ((1 - x)*(1 - 2*x - 2*x^2)) + O(x^40)) \\ Colin Barker, Apr 29 2019

Formula

a(n) = A028860(n+2)-1.
G.f.: (-1+4*x)/((x-1)*(2*x^2+2*x-1)).
From Colin Barker, Apr 29 2019: (Start)
a(n) = (-1 + (-(1-sqrt(3))^n + (1+sqrt(3))^n)/sqrt(3)).
a(n) = 3*a(n-1) - 2*a(n-3) for n>2.
(End)

A202064 Triangle T(n,k), read by rows, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 4, 0, 0, 5, 10, 1, 0, 0, 6, 20, 6, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 8, 56, 56, 8, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 10, 120, 252, 120, 10, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2011

Keywords

Comments

Riordan array (x/(1-x)^2, x^2/(1-x)^2).
Mirror image of triangle in A119900.
A203322*A130595 as infinite lower triangular matrices. - Philippe Deléham, Jan 05 2011
From Gus Wiseman, Jul 07 2025: (Start)
Also the number of subsets of {1..n} containing n with k maximal runs (sequences of consecutive elements increasing by 1). For example, row n = 5 counts the following subsets:
{5} {1,5} {1,3,5}
{4,5} {2,5}
{3,4,5} {3,5}
{2,3,4,5} {1,2,5}
{1,2,3,4,5} {1,4,5}
{2,3,5}
{2,4,5}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
For anti-runs instead of runs we have A053538.
Without requiring n see A210039, A202023, reverse A098158, A109446.
(End)

Examples

			Triangle begins :
1
2, 0
3, 1, 0
4, 4, 0, 0
5, 10, 1, 0, 0
6, 20, 6, 0, 0, 0
7, 35, 21, 1, 0, 0, 0
8, 56, 56, 8, 0, 0, 0, 0
		

Crossrefs

Cf. A007318, A005314 (antidiagonal sums), A119900, A084938, A130595, A203322.
Column k = 1 is A000027.
Row sums are A000079.
Column k = 2 is A000292.
Without zeros we have A034867.
Last nonzero term in each row appears to be A124625.
A034839 counts subsets by number of maximal runs, for anti-runs A384893.
A116674 counts strict partitions by number of maximal runs, for anti-runs A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Length[Split[#,#2==#1+1&]]==k&]],{n,12},{k,n}] (* Gus Wiseman, Jul 07 2025 *)

Formula

G.f.: 1/((1-x)^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10, 11, 12, 13 respectively.
T(n,k) = binomial(n+1,2k+1).
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 15 2012

A231131 T(n,k) = Number of (n+1) X (k+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

1, 2, 2, 6, 8, 6, 16, 40, 40, 16, 44, 176, 308, 176, 44, 120, 808, 2260, 2260, 808, 120, 328, 3584, 16812, 27664, 16812, 3584, 328, 896, 16368, 124644, 336004, 336004, 124644, 16368, 896, 2448, 72640, 924900, 4150352, 6794904, 4150352, 924900, 72640, 2448
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2013

Keywords

Comments

Table starts
..1...2.....6.....16......44.......120........328.........896..........2448
..2...8....40....176.....808......3584......16368.......72640........331648
..6..40...308...2260...16812....124644.....924900.....6862052......50913012
.16.176..2260..27664..336004...4150352...50257244...621150768....7520563372
.44.808.16812.336004.6794904.137063228.2766762720.55844298404.1127200291672

Examples

			Some solutions for n=2, k=4
..0..x..1..x..1....0..x..0..x..1....0..x..1..x..0....0..x..0..x..1
..x..1..x..2..x....x..1..x..0..x....x..1..x..2..x....x..1..x..2..x
..2..x..2..x..1....2..x..1..x..1....0..x..0..x..0....0..x..2..x..1
		

Crossrefs

Column 1 is A002605.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2);
k=2: a(n) = 22*a(n-2) -36*a(n-4) +16*a(n-6);
k=3: [order 8];
k=4: [order 18, even terms];
k=5: [order 34];
k=6: [order 90, even terms].

A265278 Expansion of (x^4+x^3-x^2+x)/(x^3+x^2-3*x+1).

Original entry on oeis.org

0, 1, 2, 6, 16, 40, 98, 238, 576, 1392, 3362, 8118, 19600, 47320, 114242, 275806, 665856, 1607520, 3880898, 9369318, 22619536, 54608392, 131836322, 318281038, 768398400, 1855077840, 4478554082, 10812186006, 26102926096, 63018038200, 152139002498, 367296043198
Offset: 0

Views

Author

Alois P. Heinz, Apr 06 2016

Keywords

Crossrefs

Agrees with A213667 except for initial terms.

Programs

  • Mathematica
    Table[2 Fibonacci[n-1, 2] + LucasL[n-1, 2]/2 + KroneckerDelta[n-1] - 1, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
    LinearRecurrence[{3,-1,-1},{0,1,2,6,16},40] (* Harvey P. Dale, Mar 18 2018 *)
  • PARI
    concat(0, Vec(x*(1-x+x^2+x^3)/((1-x)*(1-2*x-x^2)) + O(x^50))) \\ Colin Barker, Apr 12 2016

Formula

From Colin Barker, Apr 12 2016: (Start)
a(n) = (-2 + (1-sqrt(2))^n + (1+sqrt(2))^n)/2 for n>1.
a(n) = 3*a(n-1)-a(n-2)-a(n-3) for n>4.
(End)
E.g.f.: x + (cosh(sqrt(2)*x) - 1)*exp(x). - Ilya Gutkovskiy, Sep 16 2016

A096608 Triangle read by rows: T(n,k)=number of Catalan knight paths in right half-plane from (0,0) to (n,k), for 0 <= k <= 2n, n >= 0. (See A096587 for the definition of a Catalan knight.)

Original entry on oeis.org

1, 0, 0, 1, 2, 1, 0, 0, 1, 0, 2, 3, 2, 0, 0, 1, 8, 6, 1, 3, 4, 3, 0, 0, 1, 6, 12, 16, 12, 3, 4, 5, 4, 0, 0, 1, 44, 33, 18, 21, 27, 20, 6, 5, 6, 5, 0, 0, 1, 60, 76, 95, 72, 40, 34, 41, 30, 10, 6, 7, 6, 0, 0, 1, 256, 210, 154, 155, 177, 135, 75, 52, 58, 42, 15, 7, 8, 7, 0, 0, 1, 460, 520, 581, 480
Offset: 0

Views

Author

Clark Kimberling, Jun 29 2004

Keywords

Examples

			Rows:
  1;
  0, 0, 1;
  2, 1, 0, 0, 1;
  0, 2, 3, 2, 0, 0, 1;
T(3,2) counts these paths:
  (0,0)-(1,-2)-(2,0)-(3,2);
  (0,0)-(1,2)-(2,0)-(3,2);
  (0,0)-(1,2)-(2,4)-(3,2).
		

Crossrefs

Programs

  • Mathematica
    A096608[rowmax_]:=Module[{T},T[0,0]=1;T[n_,k_]:=T[n,k]=If[k<=2n,T[n-1,Abs[k-2]]+T[n-2,Abs[k-1]]+T[n-1,k+2]+T[n-2,k+1],0];Table[T[n,k],{n,0,rowmax},{k,0,2n}]]; A096608[10] (* Generates 11 rows *) (* Paolo Xausa, May 09 2023 *)
  • PARI
    row(n) = { my (rr=0, r=1); for (k=1, n, [rr, r]=[r, r*(1+'X^4)+rr*('X^3+'X^5)]); Vec(r)[1+2*n..1+4*n] } \\ Rémy Sigrist, Jun 29 2022

Formula

T(0, 0) = 1, T(0, 1) = 0, T(0, 2) = 0; T(1, 0) = 0, T(1, 1) = 0, T(1, 2) = 1.
For n >= 2, T(n, 0) = 2*T(n-2, 1) + 2*T(n-1, 2); T(n, 1) = T(n-2, 0) + T(n-2, 2) + T(n-1, 3) + T(n-1, 1); for 2 <= k <= 2n, T(n, k) = T(n-2, k-1) + T(n-2, k+1) + T(n-1, k-2) + T(n-1, k+2).
T(n, 0) + 2*Sum_{k = 1..2*n} T(n, k) = A002605(k). - Rémy Sigrist, Jun 29 2022

Extensions

Offset changed to 0 by Rémy Sigrist, Jun 29 2022

A129267 Triangle with T(n,k) = T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k) and T(0,0)=1 .

Original entry on oeis.org

1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -1, -3, -2, 1, 1, 0, -2, -5, -3, 1, 1, 1, 2, -2, -7, -4, 1, 1, 1, 5, 7, -1, -9, -5, 1, 1, 0, 3, 12, 15, 1, -11, -6, 1, 1, -1, -3, 3, 21, 26, 4, -13, -7, 1, 1, -1, -7, -15, -3, 31, 40, 8, -15, -8, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Jun 08 2007

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows given by [1,-1,1,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,...] where DELTA is the operator defined in A084938 . Riordan array (1/(1-x+x^2),(x*(1-x))/(1-x+x^2)); inverse array is (1/(1+x),(x/(1+x))*c(x/(1+x))) where c(x)is g.f. of A000108 .
Row sums are ( with the addition of a first row {0}): 0, 1, 2, 2, 0, -4, -8, -8, 0, 16, 32,... (see A009545). - Roger L. Bagula, Nov 15 2009

Examples

			Triangle begins:
   1;
   1,  1;
   0,  1,   1;
  -1, -1,   1,  1;
  -1, -3,  -2,  1,  1;
   0, -2,  -5, -3,  1,   1;
   1,  2,  -2, -7, -4,   1,   1;
   1,  5,   7, -1, -9,  -5,   1,   1;
   0,  3,  12, 15,  1, -11,  -6,   1,  1;
  -1, -3,   3, 21, 26,   4, -13,  -7,  1, 1;
  -1, -7, -15, -3, 31,  40,   8, -15, -8, 1, 1;
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or  k>n  then 0
        elif n=0 and k=0 then 1
        else T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 14 2020
  • Mathematica
    m = {{a, 1}, {-1, 1}}; v[0]:= {0, 1}; v[n_]:= v[n] = m.v[n-1]; Table[CoefficientList[v[n][[1]], a], {n, 0, 10}]//Flatten (* Roger L. Bagula, Nov 15 2009 *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0 && k==0, 1, T[n-1, k-1] + T[n-1, k] - T[n-2, k-1] - T[n-2, k] ]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 14 2020 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return 1
        else: return T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 14 2020

Formula

Sum{k=0..n} T(n,k)*x^k = { (-1)^n*A057093(n), (-1)^n*A057092(n), (-1)^n*A057091(n), (-1)^n*A057090(n), (-1)^n*A057089(n), (-1)^n*A057088(n), (-1)^n*A057087(n), (-1)^n*A030195(n+1), (-1)^n*A002605(n), A039834(n+1), A000007(n), A010892(n), A099087(n), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n), A057086(n) } for x=-11, -10, ..., 8, 9, respectively .
Sum{k=0..n} T(n,k)*A000045(k) = A100334(n).
Sum{k=0..floor(n/2)} T(n-k,k) = A050935(n+2).
T(n,k)= Sum{j>=0} A109466(n,j)*binomial(j,k).
T(n,k) = (-1)^(n-k)*A199324(n,k) = (-1)^k*A202551(n,k) = A202503(n,n-k). - Philippe Deléham, Mar 26 2013
G.f.: 1/(1-x*y+x^2*y-x+x^2). - R. J. Mathar, Aug 11 2015

Extensions

Riordan array definition corrected by Ralf Stephan, Jan 02 2014

A221459 T(n,k)=Number of 0..k arrays of length n with each element unequal to at least one neighbor, with new values introduced in 0..k order.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 2, 6, 3, 0, 1, 2, 7, 16, 5, 0, 1, 2, 7, 24, 44, 8, 0, 1, 2, 7, 25, 88, 120, 13, 0, 1, 2, 7, 25, 101, 328, 328, 21, 0, 1, 2, 7, 25, 102, 436, 1235, 896, 34, 0, 1, 2, 7, 25, 102, 455, 1971, 4668, 2448, 55, 0, 1, 2, 7, 25, 102, 456, 2192, 9159, 17675
Offset: 1

Views

Author

R. H. Hardin Jan 17 2013

Keywords

Comments

Table starts
..0.....0......0......0.......0.......0.......0.......0.......0.......0.......0
..1.....1......1......1.......1.......1.......1.......1.......1.......1.......1
..1.....2......2......2.......2.......2.......2.......2.......2.......2.......2
..2.....6......7......7.......7.......7.......7.......7.......7.......7.......7
..3....16.....24.....25......25......25......25......25......25......25......25
..5....44.....88....101.....102.....102.....102.....102.....102.....102.....102
..8...120....328....436.....455.....456.....456.....456.....456.....456.....456
.13...328...1235...1971....2192....2218....2219....2219....2219....2219....2219
.21...896...4668...9159...11203...11605...11639...11640...11640...11640...11640
.34..2448..17675..43262...59814...64647...65320...65363...65364...65364...65364
.55..6688..66974.206285..329343..379349..389533..390592..390645..390646..390646
.89.18272.253858.988963.1851911.2320555.2451393.2471066.2472654.2472718.2472719

Examples

			Some solutions for n=6 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....1....0....0....2....2....2....1....1....2....2....2....1
..3....3....1....2....2....2....2....3....2....1....2....2....2....0....1....0
..4....3....0....1....2....0....3....1....3....3....0....3....0....2....2....1
..1....4....3....3....3....3....2....0....1....0....1....2....3....1....1....0
		

Crossrefs

Column 1 is A000045(n-1)
Column 2 is A002605(n-1)

A074358 Coefficient of q^1 in nu(n), where nu(0)=1, nu(1)=b and, for n >= 2, nu(n) = b*nu(n-1) + lambda*(1 + q + q^2 + ... + q^(n-2))*nu(n-2) with (b,lambda)=(2,2).

Original entry on oeis.org

0, 0, 0, 4, 20, 80, 288, 976, 3184, 10112, 31488, 96576, 292672, 878336, 2614784, 7731456, 22728448, 66482176, 193617920, 561718272, 1624101888, 4681535488, 13457924096, 38592008192, 110419341312, 315287830528, 898583560192
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Coefficient of q^0 is A002605.

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=6, nu(3) = 16 + 4q, nu(4) = 44 + 20q + 12q^2, nu(5) = 120 + 80q + 64q^2 + 40q^3 + 8q^4, so the coefficients of q^1 are 0,0,0,4,20,80.
		

Crossrefs

Coefficient of q^0, q^2 and q^3 are in A002605, A074359 and A074360. Related sequences with other values of b and lambda are in A074082-A074089, A074352-A074357, A074361-A074363.

Programs

  • Maple
    nu := proc(b,lambda,n) global q; local qp,i ; if n = 0 then RETURN(1) ; elif n =1 then RETURN(b) ; fi ; qp:=0 ; for i from 0 to n-2 do qp := qp + q^i ; od ; RETURN( b*nu(b,lambda,n-1)+lambda*qp*nu(b,lambda,n-2)) ; end: A074358 := proc(n) RETURN( coeftayl(nu(2,2,n),q=0,1) ) ; end: for n from 0 to 30 do printf("%d,", A074358(n)) ; od ; # R. J. Mathar, Sep 20 2006
  • Mathematica
    nu[0] = 1; nu[1] = 2; nu[n_] := nu[n] = 2*nu[n-1] + 2*Total[q^Range[0, n-2] ]*nu[n-2] // Expand;
    a[n_] := Coefficient[nu[n], q, 1];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Nov 17 2017 *)

Formula

G.f.: 4*x^3*(x + 1)/(2*x^2 + 2*x - 1)^2 (conjectured). - Chai Wah Wu, May 30 2016
a(n) = (1/18)*((1 + sqrt(3))^n*(-9 + 2*sqrt(3)) - (1 - sqrt(3))^n*(9 + 2*sqrt(3)) + 3*((1 - sqrt(3))^n + (1 + sqrt(3))^n)*n) for n > 0 (conjectured). - Colin Barker, Nov 17 2017
a(n) = 4*a(n-1) - 8*a(n-3) - 4*a(n-4) for n > 4 (conjectured). - Colin Barker, Nov 17 2017

Extensions

More terms from R. J. Mathar, Sep 20 2006

A074360 Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,2).

Original entry on oeis.org

0, 0, 0, 0, 0, 40, 232, 1072, 4400, 16864, 61728, 218496, 753792, 2547840, 8468608, 27755776, 89886976, 288101888, 915089920, 2883416064, 9021001728, 28042881024, 86672025600, 266472878080, 815347462144, 2483820617728
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Coefficient of q^0 is A002605.

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=6, nu(3)=16+4q, nu(4)=44+20q+12q^2, nu(5)=120+80q+64q^2+40q^3+8q^4, so the coefficients of q^1 are 0,0,0,0,0,40.
		

Crossrefs

Coefficient of q^0, q^1 and q^2 are in A002605, A074358 and A074359. Related sequences with other values of b and lambda are in A074082-A074089, A074352-A074357, A074361-A074363.

Programs

  • Maple
    nu := proc(b,lambda,n) global q; local qp,i ; if n = 0 then RETURN(1) ; elif n =1 then RETURN(b) ; fi ; qp:=0 ; for i from 0 to n-2 do qp := qp + q^i ; od ; RETURN( b*nu(b,lambda,n-1)+lambda*qp*nu(b,lambda,n-2)) ; end: A074360 := proc(n) RETURN( coeftayl(nu(2,2,n),q=0,3) ) ; end: for n from 0 to 30 do printf("%d,", A074360(n)) ; od ; # R. J. Mathar, Sep 20 2006
  • Mathematica
    nu[0] = 1; nu[1] = 2; nu[n_] := nu[n] = 2*nu[n - 1] + 2*Total[q^Range[0, n - 2]]*nu[n - 2] // Expand;
    a[n_] := Coefficient[nu[n], q, 3];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 18 2017 *)

Formula

Conjecture: O.g.f: 8*x^5*(1+x)*(12*x^4+24*x^3-2*x^2-16*x+5)/(2*x^2+2*x-1)^4. - R. J. Mathar, Jul 22 2009

Extensions

More terms from R. J. Mathar, Sep 20 2006
Previous Showing 71-80 of 135 results. Next