cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 113 results. Next

A144824 Triangle read by rows, A054533 * A127648 (matrix product).

Original entry on oeis.org

1, -1, 2, -1, -2, 6, 0, -4, 0, 8, -1, -2, -3, -4, 20, 1, -2, -6, -4, 5, 12, -1, -2, -3, -4, -5, -6, 42, 0, 0, 0, -16, 0, 0, 0, 32, 0, 0, -9, 0, 0, -18, 0, 0, 54, 1, -2, 3, -4, -20, -6, 7, -8, 9, 40, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, 110
Offset: 1

Views

Author

Gary W. Adamson, Sep 21 2008

Keywords

Comments

Row sums = A023896: (1, 1, 3, 4, 10, 16, 21, ...).
Right border = A002618: (1, 2, 6, 8, 20, 12, ...).
Left border = mu(n) = A008683 (n).

Examples

			Triangle A054533 starts as follows:
   1;
  -1,  1;
  -1, -1,  2;
   0, -2,  0,  2;
  -1, -1, -1, -1, 4;
   1, -1, -2, -1, 1, 2;
   ...
The first few rows of triangle A144824 are as follows:
   1;
  -1,  2;
  -1, -2,  6;
   0, -4,  0,  8;
  -1, -2, -3, -4, 20;
   1, -2, -6, -4,  5, 12;
  -1, -2, -3, -4, -5, -6, 42;
   ...
		

Crossrefs

Formula

Triangle read by rows, A054533 * A127648 (matrix product). The operation is equivalent to taking termwise products of row A054533 terms and the natural numbers.
T(n, k) = k * Sum_{d|gcd(n,k)} d * mu(n/d) for n >= 1 and 1 <= k <= n. - Petros Hadjicostas, Jul 28 2019
a(n) = A002260(n)*A054533(n). - Jinyuan Wang, Jul 29 2019

A174869 a(n) is 0 if n is a power of 2, otherwise the smallest k > 0 such that A006530(n+k) < A006530(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 0, 7, 2, 1, 4, 1, 1, 1, 0, 1, 14, 1, 4, 3, 2, 1, 8, 2, 1, 5, 2, 1, 2, 1, 0, 2, 1, 1, 28, 1, 1, 1, 8, 1, 3, 1, 1, 3, 2, 1, 16, 1, 4, 1, 2, 1, 10, 1, 4, 3, 2, 1, 4, 1, 1, 1, 0, 1, 4, 1, 2, 1, 2, 1, 56, 1, 1, 6, 1, 3, 2, 1, 1, 47, 2, 1, 6, 3, 1, 1, 2, 1, 6, 5, 3, 2, 1, 1, 32, 1, 2, 1, 8, 1, 2, 1
Offset: 1

Views

Author

Vladimir Shevelev, Mar 31 2010

Keywords

Comments

a(n)=1 if the index n is an odd prime.

Crossrefs

Programs

  • Maple
    A006530 := proc(n) option remember; if n = 1 then 1; else max(op(numtheory[factorset](n)) ) ; end if; end proc:
    A174869 := proc(n) if n <= 2 then 0; else gpf := A006530(n) ; if gpf = 2 then 0; else for k from 1 do if A006530(n+k) < gpf then return k; end if; end do: end if; end if; end proc:
    seq(A174869(n),n=1..120) ; # R. J. Mathar, Aug 10 2010
  • Mathematica
    Block[{s = Array[FactorInteger[#][[-1, 1]] &, 120]}, Array[If[IntegerQ@ Log2[#], 0, Block[{k = 1, n = s[[#]]}, While[n <= s[[# + k]], k++; If[# + k > Length[s], AppendTo[s, FactorInteger[# + k][[-1, 1]] ]] ]; k]] &, 102, 2]] (* Michael De Vlieger, Apr 06 2021 *)
  • PARI
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A174869(n) = if(!bitand(n,n-1), 0, my(gpf=A006530(n)); for(k=1,oo,if(A006530(n+k)Antti Karttunen, Apr 06 2021

Extensions

More terms from R. J. Mathar, Aug 10 2010

A181538 T(n, k) = sum_(1 <= j <= k) [j | k] j mu(k / j) gcd(n, k), triangle read by rows.

Original entry on oeis.org

1, 1, 2, 1, 1, 6, 1, 2, 2, 8, 1, 1, 2, 2, 20, 1, 2, 6, 4, 4, 12, 1, 1, 2, 2, 4, 2, 42, 1, 2, 2, 8, 4, 4, 6, 32, 1, 1, 6, 2, 4, 6, 6, 4, 54, 1, 2, 2, 4, 20, 4, 6, 8, 6, 40, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 110, 1, 2, 6, 8, 4, 12, 6, 16, 18, 8, 10, 48
Offset: 1

Views

Author

Peter Luschny, Oct 29 2010

Keywords

Comments

T(n,k) = gcd(n,k) phi(k). Can be seen as a generalization of n -> phi(n^2) [A002618].

Examples

			1
1,2
1,1,6
1,2,2,8
1,1,2,2,20
1,2,6,4,4,12
1,1,2,2,4,2,42
		

Crossrefs

Cf. Row sums of triangle A181540.

Programs

  • Maple
    A181538 := (n,k) -> igcd(n,k)*phi(k);
  • Mathematica
    t[n_, k_] := Block[{j = Divisors@ k}, Plus @@ (#*MoebiusMu[k/#] & /@ j)] GCD[n, k]; Table[ t[n, k], {n, 12}, {k, n}] // Flatten (* Robert G. Wilson v, Jan 19 2011 *)

A226106 G.f.: exp( Sum_{n>=1} A068963(n)*x^n/n ) where A068963(n) = Sum_{d|n} phi(d^3).

Original entry on oeis.org

1, 1, 3, 9, 20, 52, 105, 253, 536, 1142, 2421, 4999, 10278, 20686, 41512, 81984, 161029, 312681, 603070, 1153284, 2189331, 4129537, 7733317, 14399693, 26644337, 49034811, 89741600, 163411148, 296074694, 533909026, 958416113, 1712893825, 3048468607, 5403248469, 9539609984
Offset: 0

Views

Author

Paul D. Hanna, May 26 2013

Keywords

Comments

Here phi(n) = A000010(n) is the Euler totient function.
Euler transform of A002618. - Vaclav Kotesovec, Mar 30 2018

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 20*x^4 + 52*x^5 + 105*x^6 + 253*x^7 +...
where
log(A(x)) = x + 5*x^2/2 + 19*x^3/3 + 37*x^4/4 + 101*x^5/5 + 95*x^6/6 + 295*x^7/7 + 293*x^8/8 + 505*x^9/9 +...+ A068963(n)*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^(k*EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2018 *)
    nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^EulerPhi[k^2], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2018 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[Sum[k*EulerPhi[k] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,sumdiv(m,d,eulerphi(d^3))*x^m/m)+x*O(x^n)),n)}
    for(n=0,35,print1(a(n),", "))

Formula

a(n) ~ exp(2^(9/4) * sqrt(Pi) * n^(3/4) / (3 * 5^(1/4)) + 3*Zeta(3) / Pi^2) / (2^(11/8) * 5^(1/8) * Pi^(1/4) * n^(5/8)). - Vaclav Kotesovec, Mar 30 2018

A262750 Least positive integer z such that n - phi(z^2) = x^2 + y^2 for some integers x and y with x*y*z even and phi(k^2) < n for all 0 < k < z, or 0 if no such z exists, where phi(.) is Euler's totient function given by A000010.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 2, 4, 1, 1, 2, 2, 4, 1, 2, 4, 1, 1, 2, 2, 1, 2, 3, 4, 4, 1, 2, 2, 5, 1, 2, 6, 1, 2, 3, 2, 1, 1, 2, 4, 1, 1, 2, 4, 4, 1, 2, 4, 4, 1, 2, 2, 1, 1, 2, 5, 4, 3, 3, 2, 4, 1, 2, 6, 1, 1, 2, 8, 1, 2, 3, 4, 1, 1, 2, 2, 6, 3, 3, 4, 1, 1, 2, 2, 5, 1, 2, 4, 4, 1, 2, 2, 4, 6, 3, 8, 4, 1, 2, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 30 2015

Keywords

Comments

Conjecture: a(n) <= sqrt(n) except for n = 3, 8, 13, 32.
The conjecture in A262747 implies that a(n) > 0 for all n > 0.

Examples

			a(68) = 8 since 68 - phi(8^2) = 68 - 32 = 36 = 0^2 + 6^2 with 0*6*8 even and all those phi(k^2) (k = 1,...,7) smaller than 68.
a(5403) = 67 since 5403 - phi(67^2) = 5403 - 4422 = 981 = 9^2 + 30^2 with 9*30*67 even and all those phi(k^2) (k = 1,...,5403) smaller than 5403.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=EulerPhi[n^2]
    SQ[n_]:=IntegerQ[Sqrt[n]]
    Do[Do[If[f[x]>n,Goto[aa]]; Do[If[SQ[n-f[x]-y^2]&&(Mod[x*y, 2]==0||Mod[n-f[x]-y^2, 2]==0),Print[n," ",x];Goto[bb]], {y, 0, Sqrt[(n-f[x])/2]}]; Continue, {x, 1, n}]; Label[aa];Print[n," ",0];Label[bb]; Continue, {n,1,100}]

A262982 Number of ordered ways to write n as x^4 + phi(y^2) + z*(z+1)/2 with x >= 0, y > 0 and z > 0, where phi(.) is Euler's totient function given by A000010.

Original entry on oeis.org

0, 1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 4, 3, 2, 2, 3, 3, 4, 3, 1, 3, 4, 7, 4, 2, 1, 5, 4, 3, 5, 3, 2, 3, 5, 3, 3, 4, 5, 5, 1, 3, 5, 6, 3, 4, 5, 4, 5, 6, 3, 5, 4, 4, 5, 3, 5, 8, 7, 3, 3, 5, 4, 5, 7, 3, 2, 4, 6, 7, 4, 3, 3, 5, 2, 3, 6, 5, 3, 6, 3, 2, 1, 4, 6, 7, 6, 5, 6, 1, 6, 5, 5, 6, 6, 4, 3, 4, 6, 7, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 06 2015

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1, and a(n) = 1 only for n = 2, 6, 20, 26, 40, 82, 89, 105, 305, 416, 470, 725, 6135, 25430, 90285.
Compare this with the conjectures in A262311, A262785 and A262813.

Examples

			a(2) = 1 since 1 = 0^4 + phi(1^2) + 1*2/2.
a(6) = 1 since 6 = 1^4 + phi(2^2) + 2*3/2.
a(20) = 1 since 20 = 2^4 + phi(1^2) + 2*3/2.
a(26) = 1 since 26 = 0^4 + phi(5^2) + 3*4/2.
a(40) = 1 since 40 = 0^4 + phi(6^2) + 7*8/2.
a(82) = 1 since 82 = 0^4 + phi(9^2) + 7*8/2.
a(89) = 1 since 89 = 3^4 + phi(2^2) + 3*4/2.
a(105) = 1 since 105 = 0^4 + phi(14^2) + 6*7/2.
a(305) = 1 since 305 = 4^4 + phi(12^2) + 1*2/2.
a(416) = 1 since 416 = 4^4 + phi(10^2) + 15*16/2.
a(470) = 1 since 470 = 2^4 + phi(12^2) + 28*29/2.
a(725) = 1 since 725 = 2^4 + phi(3^2) + 37*38/2.
a(6135) = 1 since 6135 = 6^4 + phi(81^2) + 30*31/2.
a(25430) = 1 since 25430 = 5^4 + phi(152^2) + 166*167/2.
a(90285) = 1 since 90285 = 16^4 + phi(212^2) + 73*74/2.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=EulerPhi[n^2]
    TQ[n_]:=n>0&&IntegerQ[Sqrt[8n+1]]
    Do[r=0;Do[If[f[x]>n,Goto[aa]];Do[If[TQ[n-f[x]-y^4],r=r+1],{y,0,(n-f[x])^(1/4)}];Label[aa];Continue,{x,1,n}];Print[n," ",r];Continue,{n,1,100}]

A263325 a(n) = sigma(n)*pi(n^2), where sigma(n) is the sum of all (positive) divisors of n, and pi(x) is the number of primes not exceeding x.

Original entry on oeis.org

0, 6, 16, 42, 54, 132, 120, 270, 286, 450, 360, 952, 546, 1056, 1152, 1674, 1098, 2574, 1440, 3276, 2720, 3312, 2376, 6300, 3534, 5124, 5160, 7672, 4380, 11088, 5184, 10836, 8688, 10314, 9600, 19110, 8322, 13680, 13440, 22590, 11046, 26304, 12452, 24780, 23868, 22968, 15792, 42408, 20349, 34131
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 14 2015

Keywords

Comments

Conjecture: (i) All the terms of this sequence are pairwise distinct.
(ii) All the numbers sigma(n)*pi(n*(n+1)) (n = 1,2,3,...) are pairwise distinct.
(iii) All the numbers n*sigma(n)*pi(n^2) (n = 1,2,3,...) are pairwise distinct, and all the numbers sigma(n^2)*pi(n^2) (n = 1,2,3,...) are also pairwise distinct.
(iv) All the numbers n*phi(n)*sigma(n^2) = phi(n^2)*sigma(n^2) (n = 1,2,3,...) are pairwise distinct, where phi(.) is Euler's totient function.
We have verified that the terms a(n) (n = 1..4*10^5) are indeed pairwise distinct.
See also A263319 for a similar conjecture.

Examples

			a(1) = 0 since sigma(1)*pi(1^2) = 1*0 = 0.
a(2) = 6 since sigma(2)*pi(2^2) = 3*2 = 6.
		

Crossrefs

Programs

  • Magma
    [#PrimesUpTo(n^2)*SumOfDivisors(n): n in [1..80]]; // Vincenzo Librandi, Oct 15 2015
  • Mathematica
    a[n_]:=a[n]=DivisorSigma[1,n]*PrimePi[n^2]
    Do[Print[n," ",a[n]],{n,1,50}]
  • PARI
    a(n) = sigma(n)*primepi(n^2); \\ Michel Marcus, Oct 15 2015
    

A283795 Triangle T(n,k) read by rows: the number of q-circulant n X n {0,1}-matrices where each row sum and each column sum equals k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 8, 14, 8, 1, 1, 20, 40, 40, 20, 1, 1, 12, 42, 44, 42, 12, 1, 1, 42, 126, 210, 210, 126, 42, 1, 1, 32, 136, 224, 350, 224, 136, 32, 1, 1, 54, 216, 546, 756, 756, 546, 216, 54, 1, 1, 40, 260, 480, 1200, 1032, 1200, 480, 260, 40, 1, 1, 110, 550, 1650, 3300, 4620, 4620, 3300, 1650, 550, 110, 1, 1, 48, 324, 992, 2538, 3168
Offset: 0

Views

Author

R. J. Mathar, Mar 16 2017

Keywords

Comments

q-circulant matrices are constructed by fixing the first row and obtaining the remaining n-1 rows by circularly shifting values by q columns, any q from 0 to n-1.
The triangle is symmetric in each row because flipping 1's and 0's in a matrix gives also a circulant matrix with n-k ones in each row and column.
The number of 1-circulant matrices with k zeros in each row and each column is apparently given by Pascal's Triangle.
Is the column k=1 given by A002618?

Examples

			The triangle starts in row n=0 and column k=0 as:
1 rsum= 1
1 1 rsum= 2
1 2 1 rsum= 4
1 6 6 1 rsum= 14
1 8 14 8 1 rsum= 32
1 20 40 40 20 1 rsum= 122
1 12 42 44 42 12 1 rsum= 154
1 42 126 210 210 126 42 1 rsum= 758
1 32 136 224 350 224 136 32 1 rsum= 1136
1 54 216 546 756 756 546 216 54 1 rsum= 3146
		

Crossrefs

Cf. A045655.

A306411 a(n) = phi(n^6) = n^5*phi(n).

Original entry on oeis.org

1, 32, 486, 2048, 12500, 15552, 100842, 131072, 354294, 400000, 1610510, 995328, 4455516, 3226944, 6075000, 8388608, 22717712, 11337408, 44569782, 25600000, 49009212, 51536320, 141599546, 63700992, 195312500, 142576512, 258280326, 206524416, 574312172, 194400000, 858874530, 536870912, 782707860, 726966784
Offset: 1

Views

Author

Jianing Song, Feb 13 2019

Keywords

Comments

The number of elements of the wreath product of C_n and S_6 with cycle partition equal to (6*n) is equal to 5!*a(n), where C_n is the cyclic group of order n, S_6 the symmetric group on 6 elements. - Josaphat Baolahy, Mar 13 2024

Crossrefs

Eulerphi(n^e): A000010 (e=1), A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), this sequence (e=6), A239442 (e=7), A306412 (e=8), A239443 (e=9).

Programs

  • Mathematica
    Array[EulerPhi[#] #^5 &, 34] (* Michael De Vlieger, Feb 17 2019 *)
  • PARI
    a(n) = n^5 * eulerphi(n)

Formula

Multiplicative with a(p^e) = (p - 1)*p^(6*e-1).
Dirichlet g.f.: zeta(s - 6) / zeta(s - 5).
Sum_{k=1..n} a(k) ~ 6*n^7 / (7*Pi^2). See A239443 for a more general formula.
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p/(p^7 - p^6 - p + 1)) = 1.03396580456393429553879930771676667947490034699829164744357501993310897305... - Vaclav Kotesovec, Sep 20 2020

A306412 a(n) = phi(n^8) = n^7*phi(n).

Original entry on oeis.org

1, 128, 4374, 32768, 312500, 559872, 4941258, 8388608, 28697814, 40000000, 194871710, 143327232, 752982204, 632481024, 1366875000, 2147483648, 6565418768, 3673320192, 16089691302, 10240000000, 21613062492, 24943578880, 74906159834, 36691771392, 122070312500
Offset: 1

Views

Author

Jianing Song, Feb 13 2019

Keywords

Crossrefs

Eulerphi(n^e): A000010 (e=1), A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), A306411 (e=6), A239442 (e=7), this sequence (e=8), A239443 (e=9).

Programs

  • Mathematica
    Table[n^7*EulerPhi[n], {n, 1, 25}] (* Amiram Eldar, Dec 06 2020 *)
  • PARI
    a(n) = n^7 * eulerphi(n)

Formula

Multiplicative with a(p^e) = (p - 1)*p^(8*e-1).
Dirichlet g.f.: zeta(s - 8) / zeta(s - 7).
Sum_{k=1..n} a(k) ~ 2*n^9 / (3*Pi^2). See A239443 for a more general formula.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^9 - p^8 - p + 1)) = 1.00807702579309679541... - Amiram Eldar, Dec 06 2020
Previous Showing 41-50 of 113 results. Next