cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A091277 Numbers k such that the k-th prime is of the form m^2 + (m+1)^2.

Original entry on oeis.org

3, 6, 13, 18, 30, 42, 65, 82, 112, 135, 170, 197, 212, 271, 284, 319, 353, 369, 445, 505, 612, 682, 933, 1069, 1193, 1226, 1286, 1510, 1609, 1676, 1711, 1789, 1900, 2161, 2241, 2285, 2363, 2450, 2667, 2712, 2924, 3247, 3644, 3894, 4000, 4100, 4367, 4647, 4922
Offset: 1

Views

Author

Ray Chandler, Jan 03 2004

Keywords

Comments

Also, the k-th prime is of the form (m^2+1)/2.

Crossrefs

Programs

  • Mathematica
    Select[Range[5000],OddQ[Sqrt[2Prime[#]-1]]&] (* Harvey P. Dale, Jun 25 2018 *)

Formula

a(n)=k such that A000040(k)=A027862(n).

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 02 2021

A002733 Numbers k such that (k^2 + 1)/10 is prime.

Original entry on oeis.org

7, 13, 17, 23, 27, 33, 37, 53, 63, 67, 77, 87, 97, 103, 113, 127, 137, 147, 153, 163, 167, 197, 223, 227, 247, 263, 267, 277, 283, 287, 297, 303, 323, 347, 363, 367, 373, 383, 397
Offset: 1

Views

Author

Keywords

Comments

Contribution from Wolfdieter Lang, Feb 27 2012: (Start)
The corresponding primes (n^2 + 1)/10 are given in A207337(n).
a(n) is the smallest positive representative of the class of nontrivial solutions of the congruence x^2 == 1 (Modd A207337(n)), if n >= 2. The trivial solution is the class with representative x=1, which also includes -1. For Modd n see a comment on A203571. For n=1: a(1) = 7 == 3 (Modd 5), and 3 is the smallest positive solution > 1.
The unique class of nontrivial solutions of the congruence x^2 == 1 (Modd p), with p an odd prime, exists for any p of the form 4*k+1, given in A002144. Here a subset of these primes is covered, the ones for k = k(n) = (a(n)^2 - 9)/40. These k-values are [1, 4, 7, 13, 18, 27, 34, 70, 99, 112, ...].
(End)

References

  • L. Euler, De numeris primis valde magnis (E283), reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 3, p. 25.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002733 = a000196 . (subtract 1) . (* 10) . a207337
    -- Reinhard Zumkeller, Apr 06 2012
  • Maple
    a := [ ]: for n from 1 to 400 do if (n^2+1 mod 10) = 0 and isprime((n^2+1)/10) then a := [ op(a), n ]; fi; od;
  • Mathematica
    Select[Range[573], PrimeQ[(#^2 + 1)/10] &] (* T. D. Noe, Feb 28 2012 *)
  • PARI
    forstep(n=7,1e3,[6,4],if(isprime(n^2\10+1),print1(n", "))) \\ Charles R Greathouse IV, Mar 11 2012
    

Formula

a(n) = sqrt(10*A207337(n)-1) = sqrt(8*A207339(n)+1), n >= 1. - Wolfdieter Lang, Feb 27 2012

A183064 Numbers k such that k^2+1 = 2*p^2, p prime.

Original entry on oeis.org

7, 41, 8119, 47321, 63018038201, 2470433131948081, 96845919575610633161, 19175002942688032928599, 5834531641231893991002972081099601, 6733044458057842709277507685523012161, 228725309250740208744750893347264645481
Offset: 1

Views

Author

Michel Lagneau, Feb 01 2011

Keywords

Comments

Subset of A002315 (Numbers k such that k^2 + 1 = 2*q^2).

Examples

			a(2) = 41 because 41^2+1 = 2*29^2.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 1000000 do : p:=ithprime(n):x:=2*p^2: y:=sqrt(x-1):if
      y=floor(y) then print(y):else fi:od:
  • PARI
    list(lim)=my(v=List(),w=3+quadgen(32),k,n); while((k=imag((1+w)*w^n++))<=lim, if(ispseudoprime(sqrtint((k^2+1)/2)), listput(v,k))); Vec(v) \\ Charles R Greathouse IV, Sep 14 2015

Extensions

More terms from Charles R Greathouse IV, Feb 01 2011

A181413 a(n) is the smallest number such that a(n)^2 + 1 is divisible by A002144(1)* A002144(2)*...* A002144(n).

Original entry on oeis.org

2, 8, 47, 2163, 18543, 241727, 3101272, 842894268, 8245041748, 521781374353, 101476250977928, 671795954794788, 32126984574675193, 425090834074746637, 309609468228403885693, 25836182225971546313682, 38544366727563360743217, 217758730168965028986551783, 25789605237863389220212237968, 309600287787935978580674202007
Offset: 1

Views

Author

Michel Lagneau, Jan 28 2011

Keywords

Examples

			a(1) = 2 because A002144(1) | 2^2+1 = 5 ;
a(2)=8 because A002144(1) * A002144(2) | 8^2+1 = 5*13 ;
a(6) = 241727 because A002144(1) * A002144(2)*...* A002144(6) | 241727^2+1
  = 2 * 5 * 13 * 17 * 29 * 37 * 41 * 601.
		

Crossrefs

Cf. A002144 (Pythagorean primes: primes of form 4n+1) A002731.

Programs

  • Maple
    with(numtheory):nn:=1000:T:=array(1..1000):k:=1:for x from 1 to nn do: p:=4*x+1:if
      type(p, prime)=true then T[k]:=p:k:=k+1:else fi:od:pr:=1:for n from 1 to k do:
      pp:=pr*T[n] :ind:=0:for q from 1 to pp while (ind=0) do: z:=q^2+1:if irem(z,pp)=0
      and ind = 0 then ind: = 1:pr:=pp:print( q):else fi:od:od:
    # Alternative
    PP:= select(isprime, [seq(i,i=5..200,4)]):
    f:= n -> min(map(t -> rhs(op(t)),[msolve(x^2+1, convert(PP[1..n],`*`))])):
    map(f, [$1..20]); # Robert Israel, Feb 01 2019

Extensions

More terms from Robert Israel, Feb 01 2019

A208292 Primes of the form (n^2+1)/26.

Original entry on oeis.org

17, 37, 457, 601, 701, 877, 997, 2017, 3037, 3257, 4957, 5237, 5701, 10601, 11257, 11677, 14737, 15217, 16001, 17317, 17837, 21577, 22157, 24677, 29717, 34057, 39157, 39937, 41201, 50777, 52201, 53101, 75277, 78101, 79201, 89917, 91097, 93001, 94201, 96137
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

Equivalently, primes of the form (K^2 + (K+1)^2)/13. The
connection to the primes of the form (m^2+1)/26 is given by m=2*K+1 (m is necessarily odd).
The corresponding m=m(n) values are given in A208293(n).
Equivalently, primes of the form (4*T(K)+1)/13, with the
corresponding triangular numbers T(K):=A000217(K), for
K=K(n)=(m(n)-1)/2, given in A208294(n).
For n>=2 the smallest positive representative of the class of
nontrivial solutions of the congruence x^2==1 (Modd a(n)) is
x=m(n). The trivial solution is the class with representative x=1, which also includes -1. For the prime
a(1)=17 the nontrivial solution is 13 (see A002733(2)). Unique nontrivial smallest positive representatives exist for the solutions for any prime of the form 4*k+1, given in A002144. Here the subset with k=k(n)=(a(n)-1)/4 appears, namely 4,9,114,150,175,219,.... For Modd n see a comment on A203571.
These primes with corresponding m values are such that floor(m(n)^2/p(n)) = 5^2, n>=1.

Examples

			a(3)=457, m(3)=A208293(3)=109. T(K(3))=A000217((109-1)/2)=
  A000217(54)=A208294(3)=1485.
		

Crossrefs

Cf. A207337, A207339 (case floor(m^2/p)=3^2); A129307, A027862, A002731 (case floor(m^2/p)=1^2).

Programs

  • Mathematica
    Select[(Range[2000]^2 + 1)/26, PrimeQ] (* T. D. Noe, Feb 28 2012 *)

Formula

a(n) is the n-th member of the increasingly ordered list of primes of the form (m^2+1)/10, where m=m(n) is necessarily an odd integer, the positive one is A208293(n).

A208293 Numbers n such that (n^2+1)/26 is prime.

Original entry on oeis.org

21, 31, 109, 125, 135, 151, 161, 229, 281, 291, 359, 369, 385, 525, 541, 551, 619, 629, 645, 671, 681, 749, 759, 801, 879, 941, 1009, 1019, 1035, 1149, 1165, 1175, 1399, 1425, 1435, 1529, 1539, 1555, 1565, 1581, 1669, 1685, 1695, 1799, 1851, 1919, 1945, 1971
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

The corresponding primes (n^2+1)/26 are given in A208292(n).
a(n) is the smallest positive representative of the class of
nontrivial solutions of the congruence x^2==1 (Modd A208292(n)), if n>=2. The trivial solution is the class with representative x=1, which also includes -1. For Modd n see a comment on A203571. For n=1: a(1) = 21 == 13 (Modd 17), and 13 is the smallest positive solution >1.
The unique class of nontrivial solutions of the congruence x^2==1 (Modd p), with p an odd prime, exists for any p of the form 4*k+1, given in A002144. Here a subset of these primes is covered, the ones for k=k(n)=(a(n)^2-25)/(4*26). These values are 4, 9, 114, 150, 175, 219, ...

Examples

			a(3)=109 because (109^2+1)/26 = 457 is prime.
  109 = sqrt(26*457-1) = sqrt(8*1485+1).
		

Crossrefs

Programs

Formula

a(n) = sqrt(26*A208292(n)-1) = sqrt(8*A208294(n)+1), n>=1.

A208294 Triangular numbers T from A000217 such that (4*T+1)/13 is prime.

Original entry on oeis.org

55, 120, 1485, 1953, 2278, 2850, 3240, 6555, 9870, 10585, 16110, 17020, 18528, 34453, 36585, 37950, 47895, 49455, 52003, 56280, 57970, 70125, 72010, 80200, 96580, 110685, 127260, 129795, 133903, 165025, 169653, 172578, 244650
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

The corresponding primes are gven in A208292, where equivalent formulations are found.
The indices of these triangular numbers are given by (A208293(n)-1)/2.

Examples

			a(2) = 120. m(2)= 31: 120 = T((31-1)/2) = T(15)=A000217(15). (4*120+1)/13 = 37 = A208292(2).
		

Crossrefs

Programs

  • Mathematica
    tri = # (# + 1)/2 & /@ Range@ 1000; Select[ tri, PrimeQ[(4 # + 1)/13] &] (* Robert G. Wilson v, Feb 28 2012 *)

Formula

a(n) = T(K(n)):= A000217(K(n)) with K(n)=(A208293(n)-1)/2.

A284036 Positive integers n such that (n^2 - 3)/2 and (n^2 + 1)/2 are twin primes.

Original entry on oeis.org

3, 5, 11, 19, 25, 29, 65, 79, 101, 205, 209, 221, 245, 275, 289, 299, 349, 371, 409, 415, 449, 521, 535, 569, 571, 575, 595, 649, 661, 695, 739, 781, 791, 935, 949, 991, 1081, 1091, 1099, 1129, 1181, 1225, 1241, 1285, 1345, 1349, 1459, 1489, 1531, 1541, 1615
Offset: 1

Views

Author

Giuseppe Coppoletta, Mar 27 2017

Keywords

Comments

All terms are obviously odd.

Examples

			25 is a term because (25^2 - 3)/2 = 311 and (25^2 + 1)/2 = 313 are twin primes.
		

Crossrefs

Programs

  • Maple
    filter:= n -> isprime((n^2-3)/2) and isprime((n^2+1)/2):
    select(filter, [seq(i,i=1..2000,2)]); # Robert Israel, Apr 24 2017
  • Mathematica
    Select[Range[1, 1285, 2], Times @@ Boole@ Map[PrimeQ, (#^2 + {-3, 1})/2] == 1 &] (* Michael De Vlieger, Mar 28 2017 *)
  • PARI
    isok(n) = isprime((n^2 - 3)/2) && isprime((n^2 + 1)/2); \\ Michel Marcus, Apr 04 2017
    
  • Python
    from sympy import isprime
    print([n for n in range(3, 1700, 2) if isprime((n**2 - 3)//2) and isprime((n**2 + 1)//2)]) # Indranil Ghosh, Apr 04 2017
  • Sage
    [n for n in range(3,1700,2) if is_prime((n^2 - 3)//2) and is_prime((n^2 + 1)//2)]
    

A181619 Numbers k such that k^2+1 = 2p,(k+1)^2+1 = 5q, (k+2)^2+1 = 10r where p, q, and r are primes.

Original entry on oeis.org

11, 51, 61, 101, 221, 261, 571, 2271, 2821, 2871, 5071, 5651, 5761, 6561, 6951, 9751, 10461, 10851, 11621, 11711, 14961, 15911, 16551, 17171, 17601, 18511, 19071, 19551, 23151, 25261, 27351, 27751
Offset: 1

Views

Author

Michel Lagneau, Jan 31 2011

Keywords

Comments

a(n) == 1 (mod 10).

Examples

			a(2) = 51 because 51^2+1 = 2*1301, 52^2+1 = 5*541, 53^2+1 = 10*281.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 30000 do : x:=n^2+1:y:=(n+1)^2+1:z:=(n+2)^2+1:x1:=factorset(x):y1:=factorset(y):z1:=factorset(z):n1:=bigomega(x):n2:=bigomega(y):n3:=bigomega(z):if
      x1[1]=2 and n1=2 and y1[1]=5 and n2 = 2 and z1[1]=2 and z1[2]=5 and n3=3 then
      printf(`%d, `, n):else fi:od:
  • Mathematica
    ksQ[k_]:=And@@PrimeQ[{(k^2+1)/2,((k+1)^2+1)/5,((k+2)^2+1)/10}]; Select[ Range[30000],ksQ] (* Harvey P. Dale, Sep 01 2013 *)
  • PARI
    forstep(k=1,1e5,10,if(isprime(k^2\2+1)&isprime((k+1)^2\5+1)&isprime((k+2)^2\10+1),print1(k", ")))

A216091 Numbers n such that k == k^(q-1) mod q for k = 1, 2, ..., q-1, where q = n^2+1.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 19, 25, 29, 35, 39, 45, 47, 49, 51, 59, 61, 65, 69, 71, 79, 85, 95, 101, 121, 131, 139, 141, 145, 159, 165, 169, 171, 175, 181, 195, 199, 201, 205, 209, 219, 221, 231, 245, 261, 271, 275, 279, 289, 299, 309, 315, 321, 325, 329, 335, 345
Offset: 1

Views

Author

Michel Lagneau, Sep 01 2012

Keywords

Comments

It is interesting to note that this sequence is identical to A002731 except for the numbers 1 and 47. For instance, a(13) = 47 but (47^2+1)/2 = 1105 is not prime, but 47^2+1 = 2210 => k^2209 == {1, 2, 3, ..., 2208, 2209} mod 2210 for k = {1, 2, ..., 2210}.
Conclusion: the two numbers of this sequence 1, 47 are not in A002731. Are there other numbers?

Examples

			3 is in the sequence because, for q = 3^2 + 1 = 10 we obtain the congruences:
1^9 = 1 == 1 mod 10;
2^9 = 512 == 2 mod 10;
3^9 = 19683 == 3 mod 10;
4^9 = 262144 == 4 mod 10;
5^9 = 1953125 == 5 mod 10;
6^9 = 10077696 == 6 mod 10,
7^9 = 40353607 == 7 mod 10;
8^9 = 134217728 == 8 mod 10;
9^9 = 387420489 == 9 mod 10.
		

Crossrefs

Cf. A002731.

Programs

  • Maple
    with(numtheory):for n from 1  by 2 to 500 do:q:=n^2+1:if type(x,prime)=false then j:=0:for i from 1 to q do: if irem(i^(q-1),q)=i then j:=j+1:else fi:od:if j=q-1 then printf(`%d, `, n):else fi:fi:od:
  • Mathematica
    f[n_] := Module[{q = n^2 + 1}, And @@ Table[PowerMod[k, q - 1, q] == k, {k, q - 1}]]; Select[Range[345], f] (* T. D. Noe, Sep 03 2012 *)
Previous Showing 11-20 of 20 results.