cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 73 results. Next

A029998 Numbers k such that k^2 is palindromic in base 13.

Original entry on oeis.org

0, 1, 2, 3, 14, 28, 170, 183, 196, 209, 308, 340, 353, 366, 2198, 2380, 2562, 2898, 4026, 4242, 4396, 4578, 7078, 7662, 28562, 28731, 28900, 29069, 30772, 30941, 31110, 32813, 32982, 33151, 37374, 51510, 52360, 54942, 55449, 57124, 57293
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), this sequence (b=13), A030072 (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).

A030072 Numbers k such that k^2 is palindromic in base 14.

Original entry on oeis.org

0, 1, 2, 3, 15, 24, 30, 47, 165, 197, 211, 225, 239, 394, 408, 422, 2190, 2445, 2745, 2955, 3165, 5490, 5700, 8565, 38417, 38613, 38809, 39005, 41175, 41371, 41567, 41763, 43737, 43933, 44129, 48159, 55962, 76834, 77030, 77226, 79592, 79788
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), this sequence (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).

Programs

  • Mathematica
    pal14Q[n_]:=Module[{idn14=IntegerDigits[n^2,14]},idn14==Reverse[idn14]]; Select[Range[0,80000],pal14Q] (* Harvey P. Dale, Mar 09 2012 *)

A030073 Numbers k such that k^2 is palindromic in base 15.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 12, 16, 19, 32, 39, 64, 76, 128, 144, 226, 241, 256, 271, 311, 452, 467, 478, 482, 576, 715, 904, 964, 1024, 1748, 1808, 1868, 2304, 2652, 2860, 3376, 3401, 3616, 3856, 4639, 6752, 6992, 7172, 8649, 10715, 13504, 13604
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), this sequence (b=15), A029733 (b=16), A118651 (b=17).

Programs

  • Mathematica
    p15Q[n_]:=Module[{id15=IntegerDigits[n^2,15]},id15==Reverse[id15]]; Select[ Range[0,14000],p15Q] (* Harvey P. Dale, Jun 03 2020 *)

A263618 Number of palindromic squares with exactly n digits.

Original entry on oeis.org

4, 0, 3, 0, 7, 1, 5, 0, 11, 0, 5, 1, 19, 0, 13, 1, 25, 0, 18, 0, 48, 1, 31, 0, 70, 1, 44, 2, 105, 0, 70, 1, 153, 1, 98, 3, 209, 0, 132, 0, 291, 1, 181, 1, 384, 0, 234, 2, 496, 1, 301, 1, 636, 0, 383, 0, 798, 1, 474, 1, 981, 0, 578, 0, 1199, 2, 701
Offset: 1

Views

Author

N. J. A. Sloane, Oct 23 2015

Keywords

Comments

Number of terms in A002779 with exactly n digits.
a(24) = a(30) = a(38) = a(40) = 0. - Robert Price, Apr 26 2019
a(2*k+1) > 0 since (10^k+1)^2 is a palindrome of 2*k+1 digits. - Chai Wah Wu, Jun 14 2024

Crossrefs

Cf. A034822 (positions of zeros).

Programs

  • Mathematica
    Table[Length[Select[Range[If[n == 1, 0, Ceiling[Sqrt[10^(n - 1)]]],Floor[Sqrt[10^n]]], #^2 == IntegerReverse[#^2] &]], {n, 15}] (* Robert Price, Apr 26 2019 *)

Extensions

a(13)-a(19) from Chai Wah Wu, Oct 24 2015
a(20) from Robert Price, Apr 26 2019
a(21)-a(44) (using A002778) from Chai Wah Wu, Sep 16 2021
a(45)-a(67) from A002778 added by Max Alekseyev, Apr 08 2025

A059744 Numbers k such that k^2 is a palindromic square of sporadic type.

Original entry on oeis.org

26, 264, 307, 836, 2285, 2636, 22865, 24846, 30693, 798644, 1042151, 1270869, 2012748, 2294675, 3069307, 11129361, 12028229, 12866669, 30001253, 64030648, 306930693, 2062386218, 2481623254, 10106064399, 10207355549, 13579355059, 22865150135, 30101273647, 30693069307
Offset: 1

Views

Author

N. J. A. Sloane, Feb 21 2001

Keywords

References

  • C. Ashbacher, More on palindromic squares, J. Rec. Math. 22, no. 2 (1990), 133-135. [A scan of the first page of this article is included with the last page of the Keith (1990) scan]
  • J. K. R. Barnett, "Tables of Square Palindromes in Bases 2 and 10," Journal of Recreational Mathematics, 23:1, pp. 13-18, 1991.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 26, pp 10, Ellipses, Paris 2008.
  • M. Keith, "Classification and Enumeration of Palindromic Squares," Journal of Recreational Mathematics, 22:2, pp. 124-132, 1990.
  • R. Ondrejka, "A Palindrome (151) of Palindromic Squares," Journal of Recreational Mathematics, 20:1, pp. 68-71, 1988.

Crossrefs

Programs

  • Mathematica
    Select[Range[1042151], ! PalindromeQ[#] && PalindromeQ[#^2] &] (* Michael De Vlieger, Oct 03 2023, not suitable for terms > 1042151, needs amendment for larger terms *)

Extensions

More terms from WorldOfNumbers website, communicated by Hugo Pfoertner, Oct 03 2023

A102859 Numbers that when squared and written backwards give a square again.

Original entry on oeis.org

0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 26, 30, 31, 33, 99, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 130, 200, 201, 202, 210, 211, 212, 220, 221, 260, 264, 300, 301, 307, 310, 311, 330, 836, 990, 1000, 1001, 1002, 1003, 1010, 1011, 1012, 1013, 1020
Offset: 1

Views

Author

Sanita Kashcheyeva (sanits(AT)gmail.com), Mar 01 2005

Keywords

Comments

Contains A002778. - Robert Israel, Sep 20 2015
Squares of these terms are in A061457. - Jon E. Schoenfield, May 17 2022

Examples

			a(7)=12 belongs to the sequence since writing 12^2 = 144 backwards gives 441 = 21^2.
		

Crossrefs

Cf. A061457 (squares).

Programs

  • Magma
    [n: n in [0..1100] | IsSquare(Seqint(Reverse(Intseq(n^2))))]; // Vincenzo Librandi, Sep 21 2015
    
  • Maple
    rev:= proc(n)
      local L, Ln, i;
      L:= convert(n, base, 10);
      Ln:= nops(L);
      add(L[i]*10^(Ln-i), i=1..Ln);
    end proc:
    select(t -> issqr(rev(t^2)),[$0..10^5]); # Robert Israel, Sep 20 2015
  • Mathematica
    Select[Range[1000], IntegerQ[Sqrt[FromDigits[Reverse[IntegerDigits[ #^2]]]]] &]
  • Python
    from itertools import count, islice
    from sympy import integer_nthroot
    def A102859_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:integer_nthroot(int(str(n**2)[::-1]),2)[1], count(max(startvalue,0)))
    A102859_list = list(islice(A102859_gen(),30)) # Chai Wah Wu, Nov 18 2022

Formula

a(n) = sqrt(A061457(n)). - Jon E. Schoenfield, May 17 2022

Extensions

0 inserted by Jon E. Schoenfield, Sep 20 2015

A002781 Palindromic cubes.

Original entry on oeis.org

0, 1, 8, 343, 1331, 1030301, 1367631, 1003003001, 10662526601, 1000300030001, 1030607060301, 1334996994331, 1000030000300001, 1033394994933301, 1331399339931331, 1000003000003000001, 1003006007006003001, 1331039930399301331
Offset: 1

Views

Author

Keywords

Comments

a(9) = 1066252601 = 2201^3 is the unique known palindromic cube that has a non-palindromic rootnumber (see comments in A002780 and Penguin reference). - Bernard Schott, Oct 21 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Revised Edition), Penguin Books, 1997, entry 10662526601, page 188.

Crossrefs

Cf. A002780.
Intersection of A000578 and A002113.

Programs

  • Mathematica
    Select[Range[0,12*10^5]^3,PalindromeQ[#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 02 2017 *)
  • PARI
    ispal(x) = my(d=digits(x)); d == Vecrev(d); \\ A002113
    lista(nn) = my(list = List(), c); for (n=0, sqrtnint(nn, 3), if (ispal(c=n^3), listput(list, c));); Vec(list); \\ Michel Marcus, Oct 21 2021

Formula

a(n) = A002780(n)^3.

Extensions

Thanks to Pierre Genix (Pierre.Genix(AT)wanadoo.fr) and Harvey P. Dale who pointed out that there were errors in earlier versions of this sequence.

A007573 a(n) is the number of base numbers with 2n+1 digits in the asymmetric families of palindromic squares.

Original entry on oeis.org

1, 2, 5, 6, 9, 10, 10, 15, 15, 16, 18, 24, 18, 26, 24, 30, 27, 33, 28, 40, 33, 40, 35, 48, 37, 50, 42, 53, 45, 58, 46, 64, 50, 64, 54, 72, 55, 73, 60, 78, 63, 82, 63, 88, 69, 88, 72, 95, 73, 98, 78, 102, 80, 106, 82, 112, 87, 111, 90, 120, 91, 122, 95, 126, 99, 130, 100, 135
Offset: 3

Views

Author

Keywords

Examples

			a(3) = 1: The only base number of length 2*3 + 1 = 7 is 1109111 = A060087(1);
a(4) = 2 indicates the existence of two length 2*4 + 1 = 9 base numbers, 110091011 = A060087(2) and 111091111 = A060087(3).
		

References

  • M. Keith, Classification and enumeration of palindromic squares, J. Rec. Math., 22 (No. 2, 1990), 124-132.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    \\ see P. De Geest link.

Extensions

a(17)-a(31) from Sean A. Irvine, Jan 10 2018
Name and offset corrected by Hugo Pfoertner, Oct 04 2023
a(32)-a(70) from Hugo Pfoertner, Oct 07 2023

A016113 Numbers whose square is a palindrome with an even number of digits.

Original entry on oeis.org

836, 798644, 64030648, 83163115486, 6360832925898, 69800670077028, 98275825201587, 6819209882215742, 40447213778058769, 404099764753665981, 633856150760638652, 795559265009384106, 637323988797048057098, 3823177109095314778621
Offset: 1

Views

Author

Keywords

Comments

For the squares, see A027829(n) = a(n)^2. - M. F. Hasler, Oct 11 2019

References

  • C. Ashbacher, More on palindromic squares, J. Rec. Math. 22, no. 2 (1990), 133-135. [A scan of the first page of this article is included with the last page of the Keith (1990) scan]

Crossrefs

A proper subset of A002778.
Cf. A027829.

Programs

  • PARI
    is_A016113(n)={Vecrev(n=digits(n^2))==n&&!bittest(#n,0)} \\ This is faster than first checking for even length, if applied to numbers in a range where the squares are known to have an even number of digits, as should be the case for a systematic search. - M. F. Hasler, Jun 08 2014

Extensions

Two terms were found by Bennett from UK (communication from Patrick De Geest)
Edited by M. F. Hasler, Jun 08 2014
Missing a(10) inserted by M. F. Hasler, Oct 11 2019

A027719 Numbers k such that k^2 + 1 is a palindrome.

Original entry on oeis.org

0, 1, 2, 10, 25, 100, 1000, 1020, 1489, 2248, 10000, 10090, 100000, 100910, 102020, 167491, 1000000, 1000200, 1009090, 2744934, 10000000, 10000900, 10090910, 24917195, 100000000, 100909090, 103226660, 271867456, 1000000000, 1000002000, 1009090910, 1577033471
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; Select[Range[0, 10^5], palQ[#^2 + 1] &] (* Giovanni Resta, Aug 29 2018 *)

Extensions

More terms from Giovanni Resta, Aug 28 2018
Previous Showing 21-30 of 73 results. Next