cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 73 results. Next

A059745 Palindromic squares of sporadic type.

Original entry on oeis.org

676, 69696, 94249, 698896, 5221225, 6948496, 522808225, 617323716, 942060249, 637832238736, 1086078706801, 1615108015161, 4051154511504, 5265533355625, 9420645460249, 123862676268321, 144678292876441, 165551171155561, 900075181570009, 4099923883299904, 94206450305460249
Offset: 1

Views

Author

N. J. A. Sloane, Feb 21 2001

Keywords

References

  • C. Ashbacher, More on palindromic squares, J. Rec. Math. 22, no. 2 (1990), 133-135. [A scan of the first page of this article is included with the last page of the Keith (1990) scan]
  • J. K. R. Barnett, "Tables of Square Palindromes in Bases 2 and 10," Journal of Recreational Mathematics, 23:1, pp. 13-18, 1991.
  • M. Keith, "Classification and Enumeration of Palindromic Squares," Journal of Recreational Mathematics, 22:2, pp. 124-132, 1990.
  • R. Ondrejka, "A Palindrome (151) of Palindromic Squares," Journal of Recreational Mathematics, 20:1, pp. 68-71, 1988.

Crossrefs

Formula

a(n) = A059744(n)^2. - Hugo Pfoertner, Oct 03 2023

Extensions

More terms from WorldOfNumbers website, communicated by Hugo Pfoertner, Oct 03 2023

A027829 Palindromic squares with an even number of digits.

Original entry on oeis.org

698896, 637832238736, 4099923883299904, 6916103777337773016196, 40460195511188111559106404, 4872133543202112023453312784, 9658137819052882509187318569, 46501623417708833880771432610564, 1635977102407987117897042017795361, 163296619873968186681869378916692361
Offset: 1

Views

Author

Keith Devlin, via Boon Leong (boon_leong(AT)hotmail.com)

Keywords

Examples

			836^2 = 698896, which is palindromic, so 698896 is in the sequence.
1001^2 = 1002001, which is palindromic, but it has an odd number of digits, so it's not in the sequence.
		

References

  • Charles Ashbacher, More on palindromic squares, J. Rec. Math. 22, no. 2 (1990), 133-135. [A scan of the first page of this article is included with the last page of the Keith (1990) scan]

Crossrefs

Programs

  • Mathematica
    Select[Range[1000000]^2, PalindromeQ[#] && OddQ[Floor[Log[10, #]]] &] (* Alonso del Arte, Oct 11 2019 *)
  • PARI
    is_A027829(n)={issquare(n)&&Vecrev(n=digits(n))==n&&!bittest(#n, 0)} \\ This is faster than first checking for even length if applied to numbers known to have an even number of digits, as should be the case for a systematic search. For this, one should only consider squares, i.e., rather use is_A016113.  - M. F. Hasler, Jun 08 2014
    
  • Python
    from math import isqrt
    from itertools import count, islice
    def A027829_gen(): # generator of terms
        return filter(lambda n: (s:=str(n))[:(t:=(len(s)+1)//2)]==s[:-t-1:-1], map(lambda n: n**2, (d for l in count(2,2) for d in range(isqrt(10**(l-1))+1,isqrt(10**l)+1))))
    A027829_list = list(islice(A027829_gen(),3)) # Chai Wah Wu, Jun 23 2022
  • Scala
    def isPalindromic(n: BigInt): Boolean = n.toString == n.toString.reverse
    val squares = ((1: BigInt) to (1000000: BigInt)).map(n => n * n)
    squares.filter(n => isPalindromic(n) && n.toString.length % 2 == 0) // Alonso del Arte, Oct 07 2019
    

Formula

a(n) = A016113(n)^2. - M. F. Hasler, Jun 08 2014

Extensions

Two new terms were recently found by Bennett from UK (communication from Patrick De Geest, Dec 1999 or before)
Edited by M. F. Hasler, Jun 08 2014

A186080 Fourth powers that are palindromic in base 10.

Original entry on oeis.org

0, 1, 14641, 104060401, 1004006004001, 10004000600040001, 100004000060000400001, 1000004000006000004000001, 10000004000000600000040000001, 100000004000000060000000400000001, 1000000004000000006000000004000000001, 10000000004000000000600000000040000000001, 100000000004000000000060000000000400000000001
Offset: 1

Views

Author

Matevz Markovic, Feb 11 2011

Keywords

Comments

See A056810 (the main entry for this problem) for further information, including the search limit. - N. J. A. Sloane, Mar 07 2011
Conjecture: If k^4 is a palindrome > 0, then k begins and ends with digit 1, all other digits of k being 0.
The number of zeros in 1x1, where the x are zeros, is the same as (the number of zeros)/4 in (1x1)^4 = 1x4x6x4x1.

Crossrefs

Programs

  • Magma
    [ p: n in [0..10000000] | s eq Reverse(s) where s is Intseq(p) where p is n^4 ];
  • Mathematica
    Do[If[Module[{idn = IntegerDigits[n^4, 10]}, idn == Reverse[idn]], Print[n^4]], {n, 100000001}]

Formula

a(n) = A056810(n)^4.

Extensions

a(11)-a(13) using extensions of A056810 from Hugo Pfoertner, Oct 22 2021

A244411 Nonprimes n such that the product of its divisors is a palindrome.

Original entry on oeis.org

1, 4, 22, 26, 49, 111, 121, 202, 1001, 1111, 2285, 10001, 10201, 11111, 100001, 1000001, 1001001, 1012101, 1100011, 1101011, 1109111, 1111111, 3069307, 10000001, 12028229, 12866669, 100000001, 101000101, 110000011, 110091011, 200010002, 10000000001, 10011111001
Offset: 1

Views

Author

Derek Orr, Jun 27 2014

Keywords

Comments

Primes trivially satisfy this property and are therefore not included in the sequence.
Numbers n such that A136522(A007955(n)) = 1.
A number is in the intersection of A002778 and A001358 iff it is in this sequence.
a(31) > 2*10^8.
a(32) > 4*10^8. - Chai Wah Wu, Aug 25 2015

Examples

			The divisors of 26 are 1,2,13,26. And 1*2*13*26 = 676 is a palindrome. Thus 26 is a member of this sequence.
		

Crossrefs

Programs

  • PARI
    rev(n)={r="";for(i=1,#digits(n),r=concat(Str(digits(n)[i]),r));return(eval(r))}
    for(n=1,2*10^8,if(!isprime(n),d=divisors(n);ss=prod(j=1,#d,d[j]);if(ss==rev(ss),print1(n,", "))))
    
  • Python
    import sympy
    from sympy import isprime
    from sympy import divisors
    def rev(n):
      r = ""
      for i in str(n):
        r = i + r
      return int(r)
    def a():
      for n in range(1,10**8):
        if not isprime(n):
          p = 1
          for i in divisors(n):
            p*=i
          if rev(p)==p:
            print(n,end=', ')
    a()
    
  • Python
    from sympy import divisor_count, sqrt
    A244411_list = [1]
    for n in range(1,10**5):
        d = divisor_count(n)
        if d > 2:
            q, r = divmod(d,2)
            s = str(n**q*(sqrt(n) if r else 1))
            if s == s[::-1]:
                A244411_list.append(n) # Chai Wah Wu, Aug 25 2015

Extensions

a(31) from Chai Wah Wu, Aug 25 2015
a(32)-a(33) from Giovanni Resta, Sep 20 2019

A263607 Base 3 numbers whose square is a palindrome in base 3.

Original entry on oeis.org

0, 1, 2, 11, 101, 102, 202, 211, 1001, 1021, 2002, 10001, 10022, 11012, 12201, 20002, 100001, 100201, 200002, 201102, 1000001, 1000222, 1002201, 1011221, 1101211, 1211201, 1212022, 2000002, 10000001, 10002001, 10200102, 10201121, 11011211, 12212101, 20000002, 20011002, 100000001, 100002222, 100022001
Offset: 1

Views

Author

N. J. A. Sloane, Oct 22 2015

Keywords

Crossrefs

A263608 Palindromes which are base-3 representations of squares.

Original entry on oeis.org

0, 1, 11, 121, 10201, 11111, 112211, 122221, 1002001, 1120211, 11022011, 100020001, 101212101, 122111221, 1012112101, 1100220011, 10000200001, 10111011101, 110002200011, 111221122111, 1000002000001, 1001221221001, 1012200022101, 1101202021011, 1221221221221, 10101111110101
Offset: 1

Views

Author

N. J. A. Sloane, Oct 22 2015

Keywords

Crossrefs

Intersection of A001738 and A118594.

Programs

  • Maple
    rev3:= proc(n) local L,i; L:= convert(n,base,3); add(L[-i]*3^(i-1),i=1..nops(L)) end proc:
    c3:= proc(n) local L,i; L:= convert(n,base,3); add(L[i]*10^(i-1),i=1..nops(L)) end proc:
    R:= 0,1: count:= 2:
    for d from 2 while count < 100 do
        if d::odd then
          V:= select(issqr, [seq(seq(a*3^((d+1)/2) + b*3^((d-1)/2)+rev3(a),b=0..2),a=3^((d-3)/2) .. 3^((d-1)/2)-1)])
        else
          V:= select(issqr, [seq(a*3^(d/2) + rev3(a), a=3^(d/2-1) .. 3^(d/2)-1)]);
        fi;
        count:= count+nops(V);
        R:= R, op(map(c3,V));
    od:
    R; # Robert Israel, May 19 2024

Extensions

Name edited by Robert Israel, May 19 2024

A263617 Number of numbers with at most n digits whose square is a palindrome.

Original entry on oeis.org

4, 7, 15, 20, 31, 37, 56, 70, 95, 113, 162, 193, 264, 310, 415, 486, 640, 741, 950, 1082, 1374, 1556, 1940, 2176, 2673, 2975, 3611, 3994, 4793, 5268, 6249, 6827, 8028, 8729
Offset: 1

Views

Author

N. J. A. Sloane, Oct 23 2015

Keywords

Crossrefs

Partial sums of A263616.

Programs

  • Mathematica
    Table[Length[Select[Range[ 0, 10^n - 1], PalindromeQ[#^2] &]], {n, 6}] (* Robert Price, Apr 26 2019 *)

Extensions

a(9)-a(10) from Chai Wah Wu, Oct 25 2015
a(11)-a(12) from Michael S. Branicky, May 23 2021
a(13)-a(22) (using A002778) from Chai Wah Wu, Sep 16 2021
a(23)-a(34) from Max Alekseyev, Apr 08 2025

A263619 Number of palindromic squares with at most n digits.

Original entry on oeis.org

4, 4, 7, 7, 14, 15, 20, 20, 31, 31, 36, 37, 56, 56, 69, 70, 95, 95, 113, 113, 161, 162, 193, 193, 263, 264, 308, 310, 415, 415, 485, 486, 639, 640, 738, 741, 950, 950, 1082, 1082, 1373, 1374, 1555, 1556, 1940, 1940, 2174, 2176, 2672, 2673, 2974, 2975, 3611, 3611, 3994, 3994, 4792, 4793, 5267, 5268, 6249, 6249, 6827, 6827, 8026, 8028, 8729
Offset: 1

Views

Author

N. J. A. Sloane, Oct 23 2015

Keywords

Crossrefs

Partial sums of A263618.

Programs

  • Mathematica
    Table[Length[Select[Range[0, Floor[Sqrt[10^n]]], PalindromeQ[#^2] &]], {n, 10}] (* Robert Price, Apr 26 2019 *)

Extensions

a(13)-a(19) from Chai Wah Wu, Oct 24 2015
a(20) from Robert Price, Apr 26 2019
a(21)-a(44) using A263618 from Chai Wah Wu, Jun 14 2024
a(45)-a(67) added by Max Alekseyev, Apr 08 2025

A307717 Number of palindromic squares, k^2, of length n such that k is also palindromic.

Original entry on oeis.org

4, 0, 2, 0, 5, 0, 3, 0, 8, 0, 5, 0, 13, 0, 9, 0, 22, 0, 16, 0, 37, 0, 27, 0, 60, 0, 43, 0, 93, 0, 65, 0, 138, 0, 94, 0, 197, 0, 131, 0, 272, 0, 177, 0, 365, 0, 233, 0, 478, 0, 300, 0, 613, 0, 379, 0, 772, 0, 471, 0, 957, 0, 577, 0, 1170, 0, 698, 0, 1413, 0
Offset: 1

Views

Author

Robert Price, Apr 23 2019

Keywords

Examples

			There are only two palindromic squares of length 3 whose root is also palindromic. 11^2=121 and 22^2=484. Thus, a(3)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[If[n == 1, 0, Ceiling[Sqrt[10^(n - 1)]]], Floor[Sqrt[10^n]]], # == IntegerReverse[#] && #^2 == IntegerReverse[#^2] &]], {n, 15}]

Formula

From Christoph Koutschan, Feb 19 2022: (Start)
a(2n-1) = A218035(n).
a(n) is given by a quasi-polynomial (for a proof, see A218035):
a(1) = 4;
a(2n) = 0;
a(4n+1) = (n^3-3*n^2+11*n+6)/3 (n > 0);
a(4n+3) = (n^3+5*n+12)/6 (n >= 0). (End)

Extensions

a(16)-a(20) from Robert Price, Apr 25 2019
a(21)-a(70) from Giovanni Resta, Apr 28 2019

A056810 Numbers whose fourth power is a palindrome.

Original entry on oeis.org

0, 1, 11, 101, 1001, 10001, 100001, 1000001, 10000001, 100000001, 1000000001, 10000000001, 100000000001
Offset: 1

Views

Author

Robert G. Wilson v, Aug 21 2000

Keywords

Comments

Suppose a number is of the form a=10...01 (see A000533) then a^2=10..020..01, so a^2 is always a palindrome. a^3=10..030..030..01, so a^3 is always a palindrome. Similarly we also have a^4=10..040..060..040..01, so a^4 is always a palindrome. However, a^5 is in general not a palindrome, for example 101^5=10510100501. - Dmitry Kamenetsky, Apr 17 2009
The sequence contains no term with digit sum 3. - Vladimir Shevelev, May 23 2011. Proof: There are four possibilities for n:
1) 1+10^k+10^m, 00, 3) 2+10^s, s>0, 4) 3*10^t, t>=0.
In the last two cases n^4 is trivially not a palindrome.
For r>=2, in the second case we have n^4 = (1 + 2*10^r)^4 = 1 + 8*10^r + 4*10^(2*r) + 2*10^(2*r + 1) + 2*10^(3*r) + 3*10^(3*r + 1) + 6*10^(4*r) + 10^(4*r + 1)
which cannot be a palindrome.
If r=1, we have 1+8*10+...9*10^4+10^5 which also is not a palindrome.
The proof for the first case is similar. QED - Vladimir Shevelev, Oct 24 2015
Does every term have the structure 100...0001? Referring to the Simmons (1972) paper, we can also ask, if n is a number whose cube is a palindrome in base 4, must the base-4 expansion of n have the form 100...0001? - N. J. A. Sloane, Oct 22 2015

Crossrefs

Cf. A186080.

Programs

  • Mathematica
    palQ[n_] := Block[{}, Reverse[idn = IntegerDigits@ n] == idn]; k = 0; lst = {}; While[k < 1000000002, If[ palQ[k^4], AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Oct 23 2015 *)
  • Python
    def ispal(n): s = str(n); return s == s[::-1]
    def afind(limit):
        for k in range(limit+1):
            if ispal(k**4): print(k, end=", ")
    afind(10000001) # Michael S. Branicky, Sep 05 2021

Extensions

a(11) from Robert G. Wilson v, Oct 23 2015
a(12)-a(13) from Michael S. Branicky, Sep 05 2021
Previous Showing 31-40 of 73 results. Next