cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A036074 Expansion of e.g.f. exp((exp(p*x) - p - 1)/p + exp(x)) for p=4.

Original entry on oeis.org

1, 2, 9, 55, 412, 3619, 36333, 408888, 5080907, 68914023, 1011165446, 15935379409, 268125052373, 4792458452162, 90605469012877, 1805135197261131, 37775862401203916, 827992670793489263
Offset: 0

Views

Author

Keywords

References

  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.

Crossrefs

Programs

  • Mathematica
    mx = 16; p = 4; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 4^k * BellB[k, 1/4] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)
  • Maxima
    a(n):=sum(sum(binomial(m,i)*sum(binomial(i,j)*(1/4)^j*(3*j+i)^n,j,0,i)*(-5/4)^(m-i),i,0,m)/m!,m,1,n); /* Vladimir Kruchinin, Sep 14 2010 */

Formula

a(n) = sum(sum(binomial(m,i)*sum(binomial(i,j)*(1/4)^j*(3*j+i)^n,j,0,i)*(-5/4)^(m-i),i,0,m)/m!,m,1,n), n > 0. - Vladimir Kruchinin, Sep 14 2010
a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=4. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (4*n/LambertW(4*n))^n * exp(n/LambertW(4*n) + (4*n/LambertW(4*n))^(1/4) - n - 5/4) / sqrt(1 + LambertW(4*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

Edited by N. J. A. Sloane, Jul 11 2008 at the suggestion of Franklin T. Adams-Watters

A080337 Bisection of A080107.

Original entry on oeis.org

1, 3, 12, 59, 339, 2210, 16033, 127643, 1103372, 10269643, 102225363, 1082190554, 12126858113, 143268057587, 1778283994284, 23120054355195, 314017850216371, 4444972514600178, 65435496909148513, 999907522895563403, 15832873029742458796, 259377550023571768075
Offset: 1

Views

Author

Wouter Meeussen, Mar 18 2003

Keywords

Comments

Number of symmetric positions of non-attacking rooks on upper-diagonal part of 2n X 2n chessboard.
Number of length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(0)=0 and s(k)<=2+max(prefix) for k>=1, see example. - Joerg Arndt, Apr 25 2010
Number of achiral color patterns in a row or loop of length 2n-1. Two color patterns are equivalent if the colors are permuted. - Robert A. Russell, Apr 24 2018
Stirling transform of A005425(n-1) per Knuth reference. - Robert A. Russell, Apr 28 2018

Examples

			From _Joerg Arndt_, Apr 25 2010: (Start)
For n=0 there is one empty string (term a(0)=0 not included here); for n=1 there is one string [0]; for n=2 there are 3 strings [00], [01], and [02];
for n=3 there are a(3)=12 strings (in lexicographic order):
01: [000],
02: [001],
03: [002],
04: [010],
05: [011],
06: [012],
07: [013],
08: [020],
09: [021],
10: [022],
11: [023],
12: [024].
(End)
For a(3) = 12, both the row and loop patterns are AAAAA, AABAA, ABABA, ABBBA, AABCC, ABACA, ABBBC, ABCAB, ABCBA, ABCBD, ABCDA, and ABCDE. - _Robert A. Russell_, Apr 24 2018
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 765). - Robert A. Russell, Apr 28 2018

Crossrefs

Row sums of A140735.
Column k=2 of A305962.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j)), j=1..m+2))
        end:
    a:= n-> b(n, -1):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jun 15 2018
  • Mathematica
    Table[Sum[ Binomial[n, k] A002872[[k + 1]], {k, 0, n}], {n, 0, 24}]
    Aodd[m_, k_] := Aodd[m, k] = If[m > 1, k Aodd[m-1, k] + Aodd[m-1, k-1]
      + Aodd[m-1, k-2], Boole[m==1 && k==1]]
    Table[Sum[Aodd[m, k], {k, 1, 2m-1}], {m, 1, 30}] (* Robert A. Russell, Apr 24 2018 *)
    x[n_] := x[n] = If[n<2, n+1, 2x[n-1] + (n-1) x[n-2]]; (* A005425 *)
    Table[Sum[StirlingS2[n, k] x[k-1], {k, 0, n}], {n, 30}] (* Robert A. Russell, Apr 28 2018, after Knuth reference *)
  • PARI
    x='x+O('x^66);
    egf=exp(x+exp(x)+exp(2*x)/2-3/2); /* = 1 +3*x +6*x^2 +59/6*x^3 +113/8*x^4 +... */
    Vec(serlaplace(egf)) /* Joerg Arndt, Apr 29 2011 */

Formula

Binomial transform of A002872 (sorting numbers).
E.g.f.: exp(x+exp(x)+exp(2*x)/2-3/2) = exp(x+sum(j=1,2, (exp(j*x)-1)/j ) ). - Joerg Arndt, Apr 29 2011
From Robert A. Russell, Apr 24 2018: (Start)
Aodd[n,k] = [n>1]*(k*Aodd[n-1,k]+Aodd[n-1,k-1]+Aodd[n-1,k-2])+[n==1]*[k==1]
a(n) = Sum_{k=1..2n-1} Aodd[n,k]. (End)
a(n) = Sum_{k=0..n} Stirling2(n, k)*A005425(k-1). (from Knuth reference) - Robert A. Russell, Apr 28 2018

Extensions

Comment corrected by Wouter Meeussen, Aug 14 2009

A084708 Number of set partitions up to rotations and reflections.

Original entry on oeis.org

1, 2, 3, 7, 12, 37, 93, 354, 1350, 6351, 31950, 179307, 1071265, 6845581, 46162583, 327731950, 2437753740, 18948599220, 153498350745, 1293123243928, 11306475314467, 102425554299516, 959826755336242, 9290811905391501
Offset: 1

Views

Author

Wouter Meeussen, Jul 02 2003

Keywords

Comments

Combines the symmetry operations of A080107 and A084423.
Equivalently, number of n-bead bracelets using any number of unlabeled (interchangable) colors. - Andrew Howroyd, Sep 25 2017

Examples

			SetPartitions[6] is the first to decompose differently from A084423: 4 cycles of length 1, 2 of 2, 9 of 3, 16 of 6, 6 of 12.
a(7) = 1 + A056357(7) + A056358(7) + A056359(7) + A056360(7) + A056361(7) + 1 = 1 + 8 + 31 + 33 + 16 + 3 + 1 = 93.
		

Crossrefs

Programs

  • Mathematica
    <A080107 *); Table[{Length[ # ], First[ # ]}&/@ Split[Sort[Length/@Split[Sort[First[Sort[Flatten[ {#, Map[Sort, (#/. i_Integer:>w+1-i), 2]}& @(NestList[Sort[Sort/@(#/. i_Integer :> Mod[i+1, w, 1])]&, #, w]), 1]]]&/@SetPartitions[w]]]]], {w, 1, 10}]
    u[0,j_]:=1;u[k_,j_]:=u[k,j]=Sum[Binomial[k-1,i-1]Plus@@(u[k-i,j]#^(i-1)&/@Divisors[j]),{i,k}]; a[n_]:=1/n*Plus@@(EulerPhi[ # ]u[Quotient[n,# ],# ]&/@Divisors[n]); Table[a[n]/2+If[EvenQ[n],u[n/2,2],Sum[Binomial[n/2-1/2,k] u[k,2], {k,0,n/2-1/2}]]/2,{n,40}] (* Wouter Meeussen, Dec 06 2008 *)

Formula

a(n) = (A080107(n)+A084423(n))/2. - Wouter Meeussen and Vladeta Jovovic, Nov 28 2008

Extensions

a(12) from Vladeta Jovovic, Jul 15 2007
More terms from Vladeta Jovovic's formula given in Mathematica line. - Wouter Meeussen, Dec 06 2008

A036075 The number of partitions of {1..5n} that are invariant under a permutation consisting of n 5-cycles.

Original entry on oeis.org

1, 2, 10, 70, 602, 6078, 70402, 917830, 13253002, 209350350, 3584098770, 66012131222, 1300004931162, 27232369503902, 604103160535330, 14136908333006822, 347827448896896554, 8971450949011952494
Offset: 0

Views

Author

Keywords

Comments

Original name: Sorting numbers.

Crossrefs

u[n,j] generates for j=1, A000110 Bell numbers; j=2, A002872; j=3, A002874; j=4, A141003 (Mathar); j=5, this sequence; j=6, A141004 (Mathar); j=7, A036077. - Wouter Meeussen, Dec 06 2008
Column 5 of A162663.

Programs

  • Mathematica
    u[0,j_]:=1;u[k_,j_]:=u[k,j]=Sum[Binomial[k-1,i-1]Plus@@(u[k-i,j]#^(i-1)&/@Divisors[j]),{i,k}]; Table[u[n,5],{n,0,12}] (* Wouter Meeussen, Dec 06 2008 *)
    mx = 16; p = 5; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 5^k * BellB[k, 1/5] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)

Formula

E.g.f.: exp((exp(p*x)-p-1)/p+exp(x)) for p=5.
a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=5. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (5*n/LambertW(5*n))^n * exp(n/LambertW(5*n) + (5*n/LambertW(5*n))^(1/5) - n - 6/5) / sqrt(1 + LambertW(5*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

New name from Danny Rorabaugh, Oct 24 2015

A036077 The number of partitions of {1..7n} that are invariant under a permutation consisting of n 7-cycles.

Original entry on oeis.org

1, 2, 12, 106, 1144, 14434, 209736, 3451290, 63194936, 1269555762, 27700698344, 651497885482, 16414347638936, 440651469115394, 12546081858835528, 377328994871025210, 11946046637611280120
Offset: 0

Views

Author

Keywords

Comments

Original name: Sorting numbers.

Crossrefs

u[n,j] generates for j=1, A000110; j=2, A002872; j=3, A002874; j=4, A141003; j=5, A036075; j=6, A141004; j=7, this sequence. - Wouter Meeussen, Dec 06 2008
Column 7 of A162663.

Programs

  • Mathematica
    u[0,j_]:=1;u[k_,j_]:=u[k,j]=Sum[Binomial[k-1,i-1]Plus@@(u[k-i,j]#^(i-1)&/@Divisors[j]),{i,k}]; Table[u[n,7],{n,0,12}] (* Wouter Meeussen, Dec 06 2008 *)
    mx = 16; p = 7; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 7^k * BellB[k, 1/7] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)

Formula

E.g.f.: exp((exp(p*x)-p-1)/p+exp(x)) for p=7.
a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=7. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (7*n/LambertW(7*n))^n * exp(n/LambertW(7*n) + (7*n/LambertW(7*n))^(1/7) - n - 8/7) / sqrt(1 + LambertW(7*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

New name from Danny Rorabaugh, Oct 24 2015

A141004 Expansion of e.g.f. exp(Sum_{d|6} (exp(d*x)-1)/d).

Original entry on oeis.org

1, 4, 28, 258, 2892, 37778, 560124, 9256010, 168182044, 3325057826, 70934634236, 1621828212826, 39517131361884, 1021237022557682, 27877344103738940, 800976143703407210, 24148078430008534428, 761815206361252780098, 25087729474993723079548
Offset: 0

Views

Author

R. J. Mathar, Jul 11 2008

Keywords

Crossrefs

u[n,j] generates for j=1, A000110 Bell numbers; j=2, A002872 "Sorting numbers"; j=3, A002874 "Sorting numbers"; j=4, A141003 (Mathar); j=5, A036075 "Sorting numbers"; j=6, A141004 (Mathar); j=7, A036077 "Sorting numbers". - Wouter Meeussen, Dec 06 2008
Column k=6 of A162663.

Programs

  • Mathematica
    u[0,j_]:=1;u[k_,j_]:=u[k,j]=Sum[Binomial[k-1,i-1]Plus@@(u[k-i,j]#^(i-1)&/@Divisors[j]),{i,k}]; Table[u[n,6],{n,0,18}] (* Wouter Meeussen, Dec 06 2008 *)

A294201 Irregular triangle read by rows: T(n,k) is the number of k-partitions of {1..3n} that are invariant under a permutation consisting of n 3-cycles (1 <= k <= 3n).

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 2, 0, 1, 1, 3, 10, 12, 3, 9, 3, 0, 1, 1, 7, 33, 59, 30, 67, 42, 6, 18, 4, 0, 1, 1, 15, 106, 270, 216, 465, 420, 120, 235, 100, 10, 30, 5, 0, 1, 1, 31, 333, 1187, 1365, 3112, 3675, 1596, 2700, 1655, 330, 605, 195, 15, 45, 6, 0, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 24 2017

Keywords

Comments

T(n,k) = coefficient of x^k for A(3,n)(x) in Gilbert and Riordan's article. - Robert A. Russell, Jun 13 2018

Examples

			Triangle begins:
  1,  0,   1;
  1,  1,   3,   2,   0,   1;
  1,  3,  10,  12,   3,   9,   3,   0,   1;
  1,  7,  33,  59,  30,  67,  42,   6,  18,   4,  0,  1;
  1, 15, 106, 270, 216, 465, 420, 120, 235, 100, 10, 30, 5, 0, 1;
  ...
Case n=2: Without loss of generality the permutation of two 3-cycles can be taken as (123)(456). The second row is [1, 1, 3, 2, 0, 1] because the set partitions that are invariant under this permutation in increasing order of number of parts are {{1, 2, 3, 4, 5, 6}}; {{1, 2, 3}, {4, 5, 6}}; {{1, 4}, {2, 5}, {3, 6}}, {{1, 5}, {2, 6}, {3, 4}}, {{1, 6}, {2, 4}, {3, 5}}; {{1, 2, 3}, {4}, {5}, {6}}, {{1}, {2}, {3}, {4, 5, 6}}, {{1}, {2}, {3}, {4}, {5}, {6}}.
		

Crossrefs

Row sums are A002874.
Column k=3 gives A053156.
Maximum row values are A294202.
Unrelated to A002875.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`([n, k]=[0, 0], 1, 0)+
         `if`(n>0 and k>0, k*T(n-1, k)+T(n-1, k-1)+T(n-1, k-3), 0)
        end:
    seq(seq(T(n, k), k=1..3*n), n=1..8);  # Alois P. Heinz, Sep 20 2019
  • Mathematica
    T[n_, k_] := T[n,k] = If[n>0 && k>0, k T[n-1,k] + T[n-1,k-1] + T[n-1,k-3], Boole[n==0 && k==0]] (* modification of Gilbert & Riordan recursion *)
    Table[T[n, k], {n,1,10}, {k,1,3n}] // Flatten (* Robert A. Russell, Jun 13 2018 *)
  • PARI
    \\ see A056391 for Polya enumeration functions
    T(n,k)={my(ci=PermCycleIndex(CylinderPerms(3,n)[2])); StructsByCycleIndex(ci,k) - if(k>1,StructsByCycleIndex(ci,k-1))}
    for (n=1, 6, for(k=1, 3*n, print1(T(n,k), ", ")); print);
    
  • PARI
    G(n)={Vec(-1+serlaplace(exp(sumdiv(3, d, y^d*(exp(d*x + O(x*x^n))-1)/d))))}
    { my(A=G(6)); for(n=1, #A, print(Vecrev(A[n]/y))) } \\ Andrew Howroyd, Sep 20 2019

Formula

T(n,k) = [n==0 & k==0] + [n>0 & k>0] * (k*T(n-1,k) + T(n-1,k-1) + T(n-1,k-3)). - Robert A. Russell, Jun 13 2018
T(n,k) = n!*[x^n*y^k] exp(Sum_{d|3} y^d*(exp(d*x) - 1)/d). - Andrew Howroyd, Sep 20 2019

A085483 Triangle read by rows: S_B(n,k) = "Type B" Stirling numbers of the second kind.

Original entry on oeis.org

2, 2, 5, 2, 15, 14, 2, 35, 84, 43, 2, 75, 350, 430, 142, 2, 155, 1260, 2795, 2130, 499, 2, 315, 4214, 15050, 19880, 10479, 1850, 2, 635, 13524, 73143, 149100, 132734, 51800, 7193, 2, 1275, 42350, 334110, 987042, 1320354, 854700, 258948, 29186, 2, 2555, 130620, 1466515, 6038550, 11390673, 10878000, 5394750, 1313370, 123109
Offset: 1

Views

Author

James East, Aug 15 2003

Keywords

Examples

			S_B(2,2)=5 because the relevant partitions of {-2,-1,1,2} are: {-2|-1|1|2}, {-1,1|-2|2}, {-1|1|-2,2}, {-1,1|-2,2}, {1,-2|-1,2}.
Triangle begins:
  2;
  2,   5;
  2,  15,   14;
  2,  35,   84,   43;
  2,  75,  350,  430,  142;
  2, 155, 1260, 2795, 2130, 499;
  ...
		

Crossrefs

S_B(n, 1) + ... + S_B(n, n) = A002872(n).

Programs

  • Mathematica
    nn = 10; f[n_] := Sum[2^(n - 3 k) n!/((n - 2 k)! k!), {k, 0, n}]; Do[f[n], {n, 0, nn}]; Table[f[k]*StirlingS2[n, k], {n, nn}, {k, n}] (* Michael De Vlieger, Sep 21 2022, after Robert G. Wilson v at A005425 *)

Formula

A partition of {-n, ..., -1, 1, ..., n} into nonempty subsets X_1, ..., X_r is called "symmetric" if for each i -X_i = X_j for some j. S_B(n, k) is the number of such symmetric partitions whose induced partition on {1, ..., n} involves k nonempty subsets. S_B(n, k) = S(n, k) * a(k), where S(n, k) is A008277 and a(k) is A005425.

A036076 Expansion of e.g.f. exp((exp(p*x)-p-1)/p+exp(x)) for p=6.

Original entry on oeis.org

1, 2, 11, 87, 844, 9599, 125545, 1854234, 30407763, 546409567, 10654642428, 223763443039, 5030118977041, 120393730088818, 3054106291046267, 81792080931311015, 2304639285452820684, 68117438479292896255
Offset: 0

Views

Author

Keywords

References

  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.

Crossrefs

Programs

  • Maple
    egf:=  exp((exp(6*x)-6-1)/6+exp(x)):
    S:= series(egf,x,501):
    seq(coeff(S,x,i)*i!, i=0..20); # Robert Israel, Nov 27 2022
  • Mathematica
    mx = 16; p = 6; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 6^k * BellB[k, 1/6] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)

Formula

a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=6. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (6*n/LambertW(6*n))^n * exp(n/LambertW(6*n) + (6*n/LambertW(6*n))^(1/6) - n - 7/6) / sqrt(1 + LambertW(6*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

Edited by N. J. A. Sloane, Jul 11 2008 at the suggestion of Franklin T. Adams-Watters.

A036081 The number of partitions of {1..(11n)} that are invariant under a permutation consisting of n 11-cycles.

Original entry on oeis.org

1, 2, 16, 202, 3044, 52794, 1055260, 24081754, 615896308, 17347970202, 531721375308, 17595339114554, 624882463734756, 23691503493287738, 954301756159098172, 40665568780962213530, 1826521141853468785364
Offset: 0

Views

Author

Keywords

Comments

Original name: Sorting numbers.

Crossrefs

Programs

  • Mathematica
    u[0, j_] := 1; u[k_, j_] := u[k, j] = Sum[Binomial[k-1, i-1]Plus@@(u[k-i, j]#^(i-1)&/@Divisors[j]), {i, k}]; Table[u[n, 11], {n, 0, 30}] (* Vincenzo Librandi, Dec 12 2012 - after Wouter Meeussen in similar sequences *)
    mx = 16; p = 11; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 11^k * BellB[k, 1/11] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)

Formula

E.g.f.: exp((exp(p*x)-p-1)/p+exp(x)) for p=11.
a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=11. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (11*n/LambertW(11*n))^n * exp(n/LambertW(11*n) + (11*n/LambertW(11*n))^(1/11) - n - 12/11) / sqrt(1 + LambertW(11*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

New name from Danny Rorabaugh, Oct 24 2015
Previous Showing 11-20 of 25 results. Next