A010567 Number of 2n-step self-avoiding closed paths (or cycles) on the 3-dimensional cubic lattice.
6, 24, 264, 3312, 48240, 762096, 12673920, 218904768, 3891176352, 70742410800, 1309643747808, 24609869536800, 468270744898944, 9005391024862848, 174776445357365040, 3419171337633496704
Offset: 1
Links
- M. E. Fisher and D. S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices and high density expansions, Phys. Rev. 133 (1964) A224-A239.
Crossrefs
Programs
-
Python
def A010567(n): # For illustration - becomes slow for n > 5 if not hasattr(A:=A010567, 'terms'): A.terms=[6]; O=0,; A.paths=[(O*3, (1,)+O*2, t+O)for t in((2,0),(1,1))] while n > len(A.terms): for L in (0,1): new = []; cycles = 0 for path in A.paths: end = path[-1] for i in (0,1,2): for s in (1,-1): t = tuple(end[j]if j!=i else end[j]+s for j in (0,1,2)) if t not in path: new.append(path+(t,)) elif L and t==path[0]: cycles += 24 if path[2][1] else 6 A.paths = new A.terms.append(cycles) return A.terms[n-1] # M. F. Hasler, Jun 17 2025
Extensions
a(8)-a(10) copied from A001413 by Andrey Zabolotskiy, May 29 2018
a(11)-a(12) copied from A001413 by Pontus von Brömssen, Feb 28 2024
a(13)-a(16) (using A001413) from Alois P. Heinz, Feb 28 2024
Name edited and "self-avoiding" added by M. F. Hasler, Jun 17 2025
Comments