cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 86 results. Next

A121859 Numbers n such that n!*3^n - 1 is prime.

Original entry on oeis.org

1, 2, 12, 20, 38, 45, 46, 105, 117, 143, 214, 1835, 2931, 7703, 11542, 19225
Offset: 1

Views

Author

Alexander Adamchuk, Sep 10 2006

Keywords

Comments

Corresponding primes of the form n!*3^n - 1 are a(n)!*3^a(n) - 1 ={2,17,254561089305599,8483004771271882804592639999,...}.
a(17) > 25000. - Robert Price, Jul 22 2013

Crossrefs

Programs

  • Mathematica
    Do[f=n!*3^n-1;If[PrimeQ[f],Print[{n,f}]],{n,1,25000}]

Extensions

a(12)-a(16) from Robert Price, Jul 22 2013

A240160 Least number k such that (k!-n)/k is prime, or 0 if no such k exists.

Original entry on oeis.org

0, 0, 0, 4, 5, 0, 7, 8, 0, 0, 0, 4, 13, 0, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 31, 0, 33, 34, 5, 0, 0, 0, 39, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 6, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5
Offset: 1

Views

Author

Derek Orr, Aug 01 2014

Keywords

Comments

For a(n) > 0, a(n) is a divisor of n.
If a(n) = n, then n - 1 is in A002982.

Crossrefs

Programs

  • PARI
    a(n)=for(k=1,n,s=(k!-n)/k;if(floor(s)==s,if(ispseudoprime(s),return(k))))
    vector(150, n, a(n))

Extensions

Typo in PARI code fixed by Colin Barker, Aug 02 2014

A270780 Let p_i = the i-th prime. a(i) is the smallest n>1 such that p_i divides n!-1.

Original entry on oeis.org

3, 5, 9, 11, 5, 17, 4, 10, 15, 35, 39, 41, 45, 15, 18, 42, 48, 35, 17, 77, 41, 21, 43, 99, 96, 53, 22, 111, 125, 129, 120, 69, 25, 75, 155, 161, 83, 171, 177, 179, 189, 90, 195, 81, 105, 111, 82, 227, 101, 28, 239, 125, 255, 261, 267, 135, 236, 279, 141, 291
Offset: 3

Views

Author

Peter Shor, Mar 22 2016

Keywords

Comments

Since p divides (p-2)!-1, the i-th term a(i) cannot be much larger than i log i.

Examples

			For i=3, the third prime is 5, and 5 divides 3!-1.
The 7th prime is 17, and 17 divides 5!-1, so a(7)=5.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local k, p; p:=ithprime(n);
          for k from 2 do if irem(k!, p)=1 then return k fi od
        end:
    seq(a(n), n=3..100);  # Alois P. Heinz, Mar 23 2016
  • Mathematica
    snpd[p_]:=Module[{n=2},While[!Divisible[n!-1,p],n++];n]; Table[snpd[p],{p,Prime[Range[3,70]]}] (* Harvey P. Dale, Jun 06 2017 *)

Extensions

More terms from Alois P. Heinz, Mar 23 2016

A325703 If n = prime(i_1)^j_1 * ... * prime(i_k)^j_k, then a(n) is the denominator of the reciprocal factorial sum j_1/i_1! + ... + j_k/i_k!.

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 24, 1, 1, 6, 120, 2, 720, 24, 3, 1, 5040, 1, 40320, 6, 24, 120, 362880, 2, 3, 720, 2, 24, 3628800, 3, 39916800, 1, 120, 5040, 24, 1, 479001600, 40320, 720, 6, 6227020800, 24, 87178291200, 120, 6, 362880, 1307674368000, 2, 12, 3, 5040, 720
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

Alternatively, if n = prime(i_1) * ... * prime(i_k), then a(n) is the denominator of 1/i_1! + ... + 1/i_k!.

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,t;
        F:= ifactors(n)[2];
        denom(add(t[2]/numtheory:-pi(t[1])!,t=F))
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 13 2024
  • Mathematica
    Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>k/PrimePi[p]!]],{n,100}]//Denominator

Formula

a(n) = A318574(A325709(n)).

A336418 Numbers with a factorial number of divisors.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 113, 116, 117, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153, 157, 163
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2020

Keywords

Comments

Positive integers n such that A000005(n) belongs to A000142.

Crossrefs

A000005 counts divisors.
A048656 counts squarefree divisors of n!.
A325617 counts permutations of the multiset of prime factors of n!.
A336414 counts divisors of n! with distinct prime exponents.

Programs

  • Mathematica
    nn=5;Select[Range[nn!],MemberQ[Array[Factorial,nn],Length[Divisors[#]]]&]

A062702 Index of factorial primes of form m!-1.

Original entry on oeis.org

3, 9, 128, 675, 25306287, 3610490805
Offset: 1

Views

Author

Labos Elemer, Jul 11 2001

Keywords

Examples

			The exact subscript of 7th prime [=30!-1=265252859812191058636308479999999] is not yet available.
		

Crossrefs

Formula

a(n) = PrimePi(A002982(n)!-1) = A000720(A055490(n)).

Extensions

Offset 1 from Michel Marcus, Aug 29 2019

A084914 Numbers k such that k^k*k! - 1 is prime.

Original entry on oeis.org

2, 4, 30, 94, 113, 162, 296, 3243
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 14 2003

Keywords

Comments

a(1)-a(8) have been proved to correspond to primes. No other terms less than 10000. - Robert Price, May 19 2012

Examples

			4 is in the sequence because 4!*4^4 - 1 = 6143 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[n^n*n!-1], Print[n]], {n, 700}]

Extensions

a(8) = 3243 from Robert Price, May 19 2012

A088412 A088258 indexed by A000142.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 11, 12, 14, 27, 30, 32, 33, 37, 38, 41, 73, 77, 94, 116, 154, 166, 320, 324, 340, 379, 399, 427, 469, 546, 872, 974, 1477, 1963, 3507, 3610, 6380, 6917, 21480, 26951, 34790, 94550, 103040, 110059, 147855, 150209, 208003
Offset: 1

Views

Author

Ray Chandler, Sep 29 2003

Keywords

Comments

Union of A002981 and A002982, except 0. - Andrey Zabolotskiy, Aug 25 2016
Terms correspond to indices m where A056752(m)=1, excepting m=2. - Bill McEachen, May 20 2025

Crossrefs

Programs

  • Maple
    select(t -> isprime(t!-1) or isprime(t!+1), [$1..600]); # Robert Israel, Aug 25 2016
  • Mathematica
    Select[Range[10^3], Or @@ PrimeQ@ {# - 1, # + 1} &[#!] &] (* Michael De Vlieger, Aug 25 2016 *)

Formula

a(n) is such positive k that A088258(n) = A000142(k).

Extensions

Values 320 to 546 extracted from Mishima's table by R. J. Mathar, Mar 05 2010
More terms and correction of the initial term from Andrey Zabolotskiy, Aug 25 2016

A176038 Primes of the form k!*(k+1)! - 1 or k!*(k+1)! + 1.

Original entry on oeis.org

2, 3, 11, 13, 2879, 86399, 114000816848279961600001, 2284848632399058501374484565150666260597460935294482959564800000000000001
Offset: 1

Views

Author

Jonathan Vos Post, Apr 07 2010

Keywords

Comments

Primes of the form A010790(k)-1 or A010790(k)+1. This is the 2nd sequence in the supersequence whose first member is factorial primes, A002981 UNION A002982. No more through 20!*(20+1)! + 1.
a(9) has already 225 digits. The terms are generated by n= 0,1,2,2,4,5,14,32,76,166... [From R. J. Mathar, Aug 31 2010]

Examples

			a(6) = 86399 because 5!*(5+1)! - 1 = 86399 is prime. a(7) = 114000816848279961600001 because 14!*(14+1)! + 1 = 114000816848279961600001 is prime.
		

Crossrefs

Formula

[{A010790(n)-1} INTERSECTION A000040] UNION [{A010790(n)+1} INTERSECTION A000040].

Extensions

One more term from R. J. Mathar, Aug 31 2010

A236169 Numbers n such that n!*3^n + 1 is prime.

Original entry on oeis.org

0, 2, 3, 8, 13, 19, 124, 199, 288, 359, 692, 3610, 5316, 5372, 7442, 8251, 14288, 16883, 17131
Offset: 1

Views

Author

Robert Price, Jan 19 2014

Keywords

Comments

a(20) > 25000.
Corresponding primes are all verified prime (i.e., not probable prime): 2, 19, 163, 264539521, 9927882482918401, 141383412854531380076544001, ...

Crossrefs

Programs

  • Mathematica
    Do[f=n!*3^n+1;If[PrimeQ[f],Print[{n,f}]],{n,0,25000}]
  • PARI
    isok(n) = isprime(n!*3^n + 1); \\ Michel Marcus, Jul 23 2017

Extensions

a(1)=0 prepended by Robert Price, Jul 22 2017
Previous Showing 61-70 of 86 results. Next