A258357
Numbers n such that cyclotomic polynomial value Phi(7,n!) is prime.
Original entry on oeis.org
0, 1, 2, 3, 13, 470, 2957
Offset: 1
3 is in the sequence because Phi(7,3!) = 1 + 6 + 6^2 + 6^3 + 6^4 + 6^5 + 6^6 = 55987 is prime.
A331547
Numbers k such that k and k! - 1 have the same number of divisors.
Original entry on oeis.org
3, 7, 8, 10, 26, 27, 34, 85, 93, 104, 143, 152
Offset: 1
-
Select[Range[50], DivisorSigma[0, #] - DivisorSigma[0, Factorial[#] - 1] == 0 &]
-
isok(k) = k>1 && numdiv(k)==numdiv(k!-1); \\ Jinyuan Wang, Jan 20 2020
-
{is(n)=my(f); n>2&& numdiv(n)>=numdiv(f=factor(n!-1,0))&& if( ispseudoprime(vecmax(f[,1])), numdiv(n)==numdiv(f), numdiv(n)<2*numdiv(f), 0, numdiv(n)==numdiv(n!-1))} \\ Avoids complete factorization if possible. - M. F. Hasler, Feb 26 2020
A344991
Numbers k such that (2*k+1)*k!-1 is prime.
Original entry on oeis.org
1, 3, 5, 15, 20, 44, 45, 73, 80, 93, 295, 5395
Offset: 1
-
select(k -> isprime((2*k+1)*k!-1), [$1 .. 300])[];
-
Do[If[PrimeQ[(2*k + 1)*Factorial[k] - 1], Print[k]], {k, 1, 3000}]
-
for(k=1, 3000, if(isprime((2*k+1)*k!-1), print1(k", ")))
-
for k in range(1, 3000):
if is_prime((2*k+1)*factorial(k) - 1):
print(k)
A051857
Numbers n such that (n!)^2-n!+1 is prime.
Original entry on oeis.org
2, 3, 5, 7, 38, 2319, 2996, 3321, 3892
Offset: 1
Andrew Walker (ajw01(AT)uow.edu.au), Dec 13 1999
- C. K. Caldwell, The Prime Pages
- C. Nash, Prime Form [?Broken link]
- M. Oakes, Re: Gaussian primorial and factorial primes, Primeform, Dec 21 2010
- Mike Oakes, Andrew Walker, David Broadhurst, Gaussian primorial and factorial primes, digest of 7 messages in primeform Yahoo group, Dec 20 - Dec 21, 2010.
A084830
Numbers k such that (k!)^2 + k! - 1 is prime.
Original entry on oeis.org
2, 3, 4, 5, 6, 14, 17, 50, 111, 254, 506, 6613, 7475
Offset: 1
5 is in the sequence because (5!)^2 + 5! - 1 = 14519 is prime.
- H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987).
A084898
Numbers k such that k^k*k! + 1 is prime.
Original entry on oeis.org
1, 3, 7, 13, 23, 55, 90, 337, 2313, 8767
Offset: 1
7 is in the sequence because 7^7*7! + 1 = 4150656721 is prime.
A085700
Numbers k such that (2k)! - (2k-2)! + (2k-4)! - ... + (-1)^k 0! is prime.
Original entry on oeis.org
2, 4, 26, 112, 365, 449, 453
Offset: 1
4 is in the sequence because 8! - 6! + 4! - 2! + 1 = 39623 is prime.
-
Do[If[PrimeQ[Sum[(-1)^(n-k)(2k)!, {k, 0, n}]], Print[n]], {n, 1000}]
A122724
Primes p such that (2p)! - 1 is also prime.
Original entry on oeis.org
2, 3, 7, 19, 47, 83, 487
Offset: 1
A172114
Partial sums of factorial primes A088054.
Original entry on oeis.org
2, 5, 10, 17, 40, 759, 5798, 39922599, 518924198, 87697215397, 10888869450418352248465215398, 265263748681641476988556945215397, 263396100682375171644206569105215396, 8946713719494261667162400970385215395
Offset: 1
A176049
Primes of the form n!*(n+1)!*(n+2)! - 1 or n!*(n+1)!*(n+2)! + 1.
Original entry on oeis.org
3, 11, 13, 2073601, 146313215999, 52563198423859200001, 709885457731229765106401279999999, 15120395453651827088974983182763034097693491200000000001
Offset: 1
a(2) = 11 because 1!*(1+1)!*(1+2)! - 1 = 11 is prime. a(4) = 2073601 because 4!*(4+1)!*(4+2)! + 1 = 2073601 is prime. a(7) because 13!*(13+1)!*(13+2)! - 1 = 709885457731229765106401279999999 is prime.
-
Select[Union[Flatten[Times@@#+{1,-1}&/@Partition[Range[0,30]!,3,1]]], PrimeQ] (* Harvey P. Dale, Jan 05 2013 *)
Comments