cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 355 results. Next

A264024 a(n) = gcd(phi(k), k-1) / lambda(k), where k is n-th Carmichael number A002997(n) and lambda(k) = A002322(k).

Original entry on oeis.org

1, 1, 12, 2, 1, 1, 9, 1, 4, 1, 6, 18, 1, 1, 1, 2, 1, 1, 1, 2, 12, 1, 1, 1, 1, 3, 3, 3, 50, 1, 18, 2, 1, 2, 1, 2, 5, 36, 1, 1, 2, 3, 4, 3, 3, 2, 3, 1, 1, 3, 3, 2, 4, 2, 5, 1, 4, 4, 4, 1, 1, 3, 40, 28, 1, 2, 4, 2, 4, 1, 2, 1, 2, 1, 33, 5, 50, 64, 1, 1, 3, 2, 1, 1, 12, 3, 1, 12, 1, 1, 1, 24, 1, 3, 128, 1, 6, 8, 5, 20, 3, 2, 2, 6, 4
Offset: 1

Views

Author

Thomas Ordowski, Nov 01 2015

Keywords

Crossrefs

Programs

  • Mathematica
    t = Cases[Range[1, 16 (10^6), 2], n_ /; Mod[n, CarmichaelLambda@ n] == 1 && ! PrimeQ@ n]; Table[GCD[EulerPhi@ t[[n]], t[[n]] - 1]/CarmichaelLambda@ t[[n]], {n, 105}] (* Michael De Vlieger, Nov 03 2015, after Artur Jasinski at A002997: alternatively use A002997 data for t *)
  • PARI
    t(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1;
    is(n)=n%2 && !isprime(n) && t(n) && n>1;
    c(n)=gcd(eulerphi(n),n-1)/lcm(znstar(n)[2]);
    for(n=1, 1e7, if(is(n), print1(c(n)", "))) \\ Altug Alkan, Nov 01 2015

Formula

a(n) = A049559(k)/A002322(k), where k = A002997(n).

Extensions

More terms from Altug Alkan, Nov 01 2015

A265285 Carmichael numbers (A002997) k such that k-1 is a square.

Original entry on oeis.org

46657, 2433601, 67371265, 351596817937, 422240040001, 18677955240001, 458631349862401, 286245437364810001, 20717489165917230086401
Offset: 1

Views

Author

Altug Alkan, Dec 06 2015

Keywords

Comments

This sequence contains all Carmichael numbers n such that for all primes p dividing n, p-1 divides n-1 and furthermore, n-1 is a square.
Numbers sqrt(a(n)-1) form a subsequence of A135590. - Max Alekseyev, Apr 25 2024

Examples

			46657 is a term because 46657 - 1 = 46656 = 216^2.
2433601 is a term because 2433601 - 1 = 2433600 = 1560^2.
		

Crossrefs

Subsequence of A265237 and of A265328.

Programs

  • Maple
    isA002997:= proc(n) local F,p;
             if n::even or isprime(n)  then return false fi;
             F:= ifactors(n)[2];
             if max(seq(f[2],f=F)) > 1 then return false fi;
             andmap(f -> (n-1) mod (f[1]-1) = 0,  F)
    end proc:
    select(isA002997, [seq(4*i^2+1,i=1..10^6)]); # Robert Israel, Dec 08 2015
  • PARI
    is_c(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 }
    for(n=1, 1e10, if(is_c(n) && issquare(n-1), print1(n, ", ")))
    
  • PARI
    lista(kmax) = {my(m); for(k = 2, kmax, m = k^2 + 1; if(!isprime(m), f = factor(k); for(i = 1, #f~, f[i, 2] *= 2); fordiv(f, d, if(!(m % (d+1)) && isprime(d+1), m /= (d+1))); if(m == 1, print1(k^2 + 1, ", ")))); } \\ Amiram Eldar, May 02 2024

Extensions

a(4)-a(5), using A002997 b-file, from Michel Marcus, Dec 07 2015
a(6) and a(7) from Robert Israel, Dec 08 2015
a(8) from Max Alekseyev, Apr 30 2018
a(9) from Daniel Suteu confirmed by Max Alekseyev, Apr 25 2024

A365022 The lesser of twin Carmichael numbers: a pair of consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between them.

Original entry on oeis.org

2465, 62745, 512461, 656601, 658801, 838201, 1033669, 2100901, 4903921, 5968873, 6049681, 8341201, 8719309, 9439201, 9582145, 9585541, 11119105, 11921001, 12261061, 15829633, 17236801, 26921089, 35571601, 36121345, 38624041, 41341321, 43286881, 43584481, 45877861
Offset: 1

Views

Author

Amiram Eldar, Aug 17 2023

Keywords

Comments

The sequence of weak Carmichael numbers is A225498. The weak Carmichael numbers that are not powers of primes (A000961) are in A087442.

Crossrefs

Subsequence of A002997.
Cf. A000961, A087442, A225498, A365023 (greater counterparts), A365024.

Programs

  • Mathematica
    npwcQ[n_] := Length[(p = FactorInteger[n][[;; , 1]])] > 1 && AllTrue[p, Divisible[n - 1, # - 1] &]; (* A087442 *)
    seq[nmax_] := Module[{carmichaels = Select[Range[1, nmax, 2], CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &], s = {}, c1, c2}, Do[c1 = carmichaels[[k]] + 2; c2 = carmichaels[[k + 1]] - 2; While[c1 < c2, If[npwcQ[c1], Break[]]; c1 += 2]; If[c1 == c2, AppendTo[s, carmichaels[[k]]]], {k, 1, Length[carmichaels] - 1}]; s]; seq[10^6]

A365023 The greater of twin Carmichael numbers: a pair of consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between them.

Original entry on oeis.org

2821, 63973, 530881, 658801, 670033, 852841, 1050985, 2113921, 4909177, 6049681, 6054985, 8355841, 8719921, 9494101, 9585541, 9613297, 11205601, 11972017, 12262321, 15888313, 17316001, 26932081, 35703361, 36765901, 38637361, 41471521, 43331401, 43620409, 45890209
Offset: 1

Views

Author

Amiram Eldar, Aug 17 2023

Keywords

Crossrefs

Subsequence of A002997.
Cf. A000961, A087442, A225498, A365022 (lesser counterparts), A365024.

Programs

  • Mathematica
    npwcQ[n_] := Length[(p = FactorInteger[n][[;; , 1]])] > 1 && AllTrue[p, Divisible[n - 1, # - 1] &]; (* A087442 *)
    seq[nmax_] := Module[{carmichaels = Select[Range[1, nmax, 2], CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &], s = {}, c1, c2}, Do[c1 = carmichaels[[k]] + 2; c2 = carmichaels[[k + 1]] - 2; While[c1 < c2, If[npwcQ[c1], Break[]]; c1 += 2]; If[c1 == c2, AppendTo[s, carmichaels[[k+1]]]], {k, 1, Length[carmichaels] - 1}]; s]; seq[10^6]

A365024 Starts of runs of 3 consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between any two consecutive members.

Original entry on oeis.org

656601, 5968873, 9582145, 45877861, 67653433, 84311569, 171454321, 171679561, 193708801, 193910977, 230630401, 357277921, 367804801, 393122521, 393513121, 393716701, 395044651, 557160241, 703995733, 710382401, 775368901, 832060801, 833608321, 834244501, 939947009
Offset: 1

Views

Author

Amiram Eldar, Aug 17 2023

Keywords

Comments

The second member in each triple is a term of both A365022 and A365023.
171454321 is the least start of 4 consecutive Carmichael numbers with this property, and 393122521 is the least start of 5, and also 6, consecutive Carmichael numbers with this property.

Crossrefs

Subsequence of A002997 and A365023.

Programs

  • Mathematica
    npwcQ[n_] := Length[(p = FactorInteger[n][[;; , 1]])] > 1 && AllTrue[p, Divisible[n - 1, # - 1] &]; (* A087442 *)
    seq[indmax_] := Module[{carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]], s1 = s2 = {}, c1, c2, i}, Do[c1 = carmichaels[[k]] + 2; c2 = carmichaels[[k + 1]] - 2; While[c1 < c2, If[npwcQ[c1], Break[]]; c1 += 2]; If[c1 == c2, AppendTo[s1, carmichaels[[k]]]; AppendTo[s2, carmichaels[[k + 1]]]], {k, 1, Min[indmax, Length[carmichaels] - 1]}]; i = Position[Rest[s1] - Most[s2], 0] // Flatten; s1[[i]]]; seq[200]

A225005 Number of Carmichael numbers (A002997) less than 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 6, 9, 10, 15, 19, 23, 33, 45, 55, 69, 95, 130, 162, 214, 290, 375, 483, 656, 864, 1118, 1446, 1874, 2437, 3130, 4058, 5188, 6642, 8521, 11002, 14236, 18400, 23631, 30521, 39376, 50685, 65590, 84817, 109857, 141892, 183507, 237217, 307278, 398506, 517446, 672105, 873109, 1136472, 1479525, 1927138, 2513234, 3278553, 4279356
Offset: 1

Views

Author

Max Alekseyev, Apr 23 2013

Keywords

Crossrefs

Partial sums of A182490.

A265328 Carmichael numbers (A002997) k such that k-1 is a perfect power (A001597).

Original entry on oeis.org

1729, 46657, 2433601, 2628073, 19683001, 67371265, 110592000001, 351596817937, 422240040001, 432081216001, 2116874304001, 3176523000001, 18677955240001, 458631349862401, 286245437364810001, 312328165704192001, 12062716067698821000001, 20717489165917230086401, 211215936967181638848001, 411354705193473163968001
Offset: 1

Views

Author

Altug Alkan, Dec 07 2015

Keywords

Comments

From Antti Karttunen, Dec 08 2015: (Start)
The prime factorizations of the first six terms are:
7*13*19, 13*37*97, 17*37*53*73, 7*37*73*139, 13*37*151*271, 5*13*37*109*257
and the prime factorizations of the corresponding perfect powers (numbers one smaller) are:
(2^6 * 3^3), (2^6 * 3^6), (2^6 * 3^2 * 5^2 * 13^2), (2^3 * 3^3 * 23^3), (2^3 * 3^9 * 5^3), (2^8 * 3^6 * 19^2).
(End)
For each k in {22934100, 59553720, 74371320, 242699310, 3190927740, 9214178820, 84855997590}, which is a subset of A270840, k^3+1 is a Carmichael number. - Daniel Suteu, Aug 24 2019
Wagstaff (2024) found that there are no Carmichael numbers k below 10^21 such that k+1 is a perfect power. - Amiram Eldar, Dec 29 2024

Examples

			1729 = 7*13*19 is a term because 1729 - 1 = 1728 = 12^3, and 7-1 = 6, 13-1 = 12 and 19-1 = 18 can be all constructed from the primes available in 1728 = (2^6 * 3^3).
2433601 = 17*37*53*73 is a term because 2433601 - 1 = 2433600 = 1560^2, and 16, 36, 52 and 72 can be all constructed from the primes available in 2433600 = (2^6 * 3^2 * 5^2 * 13^2).
67371265 = 5*13*37*109*257 is a term because 67371264 = 8208^2, and 4 (= 2*2), 12 (= 2*2*3), 36 (= 2*2*3*3), 108 (= 2*2*3*3*3) and 256 (= 2^8) can be all constructed from the primes available in 67371264 = (2^8 * 3^6 * 19^2).
		

Crossrefs

Contains A265285 as a subsequence.

Programs

  • Mathematica
    Select[Cases[Range[1, 10^7, 2], n_ /; Mod[n, CarmichaelLambda@ n] == 1 && ! PrimeQ@ n], GCD @@ FactorInteger[# - 1][[All, 2]] > 1 &] (* Michael De Vlieger, Dec 14 2015, after Ant King at A001597 and Artur Jasinski at A002997 *)
  • PARI
    is_c(n)={my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1}
    for(n=1, 1e10, if(is_c(n) && ispower(n-1), print1(n, ", ")))
    
  • Perl
    use ntheory ":all"; foroddcomposites { say if is_power($-1) && is_carmichael($) } 1e8; # Dana Jacobsen, May 05 2017

Extensions

More terms from Dana Jacobsen, May 05 2017
a(17) from Daniel Suteu confirmed, a(18)-a(20) added by Max Alekseyev, Apr 25 2024

A270267 Carmichael numbers (A002997) that are the sum of three consecutive primes.

Original entry on oeis.org

252601, 410041, 1615681, 2113921, 10606681, 10877581, 11921001, 26932081, 44238481, 54767881, 82929001, 120981601, 128697361, 208969201, 246446929, 255160621, 278152381, 280067761, 311388337, 325546585, 334783585, 416964241, 533860309, 593234929, 672389641
Offset: 1

Views

Author

Altug Alkan, Mar 14 2016

Keywords

Comments

In other words, Carmichael numbers of the form p + q + r where p, q and r are consecutive primes.
If a Carmichael number is the sum of n consecutive primes, it is so obvious that the minimum value of n is 3.
Intersection of A002997 and A034961.

Examples

			84191, 84199 and 84211 are consecutive primes and sum of them is 252601 that is a Carmichael number.
136657, 136691 and 136693 are consecutive primes and sum of them is 410041 that is a Carmichael number.
538553, 538561 and 538567 are consecutive primes and sum of them is 1615681 that is a Carmichael number.
		

Crossrefs

Programs

  • PARI
    isA002997(n) = {my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1}
    a034961(n) = my(p=prime(n), q=nextprime(p+1)); p+q+nextprime(q+1);
    for(n=1, 1e6, if(isA002997(a034961(n)), print1(a034961(n), ", ")));

Extensions

More terms from Amiram Eldar, Jun 25 2019

A291637 Carmichael numbers (A002997) that are super-Poulet numbers (A050217).

Original entry on oeis.org

294409, 1299963601, 4215885697, 4562359201, 7629221377, 13079177569, 19742849041, 45983665729, 65700513721, 147523256371, 168003672409, 227959335001, 459814831561, 582561482161, 1042789205881, 1297472175451, 1544001719761, 2718557844481, 3253891093249, 4116931056001, 4226818060921, 4406163138721, 4764162536641, 4790779641001, 5419967134849, 7298963852041, 8470346587201
Offset: 1

Views

Author

Max Alekseyev and Thomas Ordowski, Aug 28 2017

Keywords

Comments

Problem: are there infinitely many such numbers?
From Daniel Suteu, Sep 17 2020: (Start)
If we consider f(n) to be the smallest number in the sequence with n prime factors, then we have:
f(3) = 294409,
f(4) = 3018694485093841,
f(5) <= 521635331852681575100906881,
f(6) <= 2835402730651853232634509813787097410561,
f(7) <= 165784025660216242122027716057592895796242004385542265601. (End)

Crossrefs

Intersection of A178997 and A002997.

A299799 Carmichael numbers (A002997) that are Chebyshev pseudoprimes (A175530).

Original entry on oeis.org

443372888629441, 582920080863121, 39671149333495681, 842526563598720001, 2380296518909971201, 3188618003602886401, 33711266676317630401, 54764632857801026161, 122762671289519184001, 361266866679292635601, 4208895375600667752001, 7673096805497432749441
Offset: 1

Views

Author

Max Alekseyev, Feb 19 2018

Keywords

Comments

Odd composite integer n is in this sequence if n == 1 or p (mod (p^2-1)/2) for every prime p|n.
No other terms below 10^22.

Crossrefs

Intersection of A002997 and A175530.
Contains A175531 as a subsequence.

Extensions

a(9) from Daniel Suteu confirmed and a(10) added by Max Alekseyev, Dec 16 2020
a(11)-a(12) from Max Alekseyev, Apr 21 2024
Previous Showing 21-30 of 355 results. Next