cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A294373 Product of first n Bell numbers.

Original entry on oeis.org

1, 1, 2, 10, 150, 7800, 1583400, 1388641800, 5748977052000, 121573617718644000, 14099500314919737900000, 9567497928695086546803000000, 40313580569855830588349480391000000, 1114446238307803607782300144651734867000000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Maple
    B:= map(combinat:-bell, [$0..19]):
    map(i -> convert(B[1..i],`*`),[$1..20]); # Robert Israel, Oct 29 2017
  • Mathematica
    Table[Product[BellB[k], {k, 0, n}], {n, 0, 15}]

Formula

log(a(n)) ~ n^2 * LambertW(n)/2 * (1 - 3/(2*LambertW(n)) + 3/(2*LambertW(n)^2) + 1/(4*LambertW(n)^3)). - Vaclav Kotesovec, Feb 26 2021

A007686 Prime(n)*...*a(n) is the least product of consecutive primes which is non-deficient.

Original entry on oeis.org

3, 13, 31, 73, 149, 233, 367, 521, 733, 991, 1249, 1579, 1949, 2341, 2791, 3343, 3881, 4481, 5147, 5849, 6619, 7499, 8387, 9341, 10321, 11411, 12517, 13709, 15013, 16363, 17881, 19381, 20873, 22369, 24007, 25763, 27611, 29399, 31357
Offset: 1

Views

Author

Keywords

Comments

Differs from A007708 only for n=1. - Michel Marcus, Mar 10 2013
a(n) is approximately n^2 log^2 n. - Charles R Greathouse IV, Feb 26 2025

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = Prime[n]}, r = 1 + 1/p; While[r < 2,  p = NextPrime[p]; r *= 1 + 1/p]; p]; Array[a, 39] (* Amiram Eldar, Jun 29 2019 *)
  • PARI
    a(n) = {p = prime(n); sig = p+1; prd = p; while (sig < 2*prd, p = nextprime(p+1); sig *= p+1; prd *= p;); return (p);} \\ Michel Marcus, Mar 10 2013

Extensions

More terms from Don Reble, Nov 10 2005

A342170 Product of first n little Schröder numbers.

Original entry on oeis.org

1, 1, 3, 33, 1485, 292545, 264168135, 1130375449665, 23503896724884345, 2422053053602606867905, 1256704025339194996874320395, 3326147448057830199712191898815585, 45398150793225628820115544929795174823365, 3225056167710201318911738099365978237877235350145
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 03 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 1,
          ((6*n-3)*b(n-1)-(n-2)*b(n-2))/(n+1))
        end:
    a:= proc(n) a(n):=`if`(n=0, 1, a(n-1)*b(n)) end:
    seq(a(n), n=0..15);  # Alois P. Heinz, Mar 03 2021
  • Mathematica
    Table[Product[Hypergeometric2F1[1-k, k+2, 2, -1], {k, 1, n}], {n, 0, 15}]
    FoldList[Times, 1, Table[Hypergeometric2F1[1 - n, n + 2, 2, -1], {n, 1, 15}]]

Formula

a(n) = Product_{k=1..n} A001003(k).
a(n) ~ c * (1 + sqrt(2))^(n*(n+2)) * exp(3*n/2) / (2^((7*n + 3)/4) * Pi^((2*n + 3)/4) * n^(3*n/2 + 3/2 + 9/(16*sqrt(2)))), where c = 0.89405100528141459535141257102427907468205556782800836208733677564241771912...

A069640 Let M_n be the n X n matrix with M_n(i,j)=1/(i+j+1); then a(n)=1/det(M_n).

Original entry on oeis.org

3, 240, 378000, 10668672000, 5175372787200000, 42202225467872870400000, 5708700736339601341845504000000, 12701009683686045652926579789004800000000, 462068939479146913162956288390362787269836800000000
Offset: 1

Views

Author

Benoit Cloitre, Apr 21 2002

Keywords

References

  • Wolfram Research, 1991 Mathematica Conference, Elementary Tutorial Notes, Section 1, Introduction to Mathematica, Paul Abbott, page 19.

Crossrefs

Programs

  • Maple
    seq(1/LinearAlgebra:-Determinant(LinearAlgebra:-HilbertMatrix(n,n,-1)),n=1..10); # Robert Israel, Sep 26 2018
  • Mathematica
    Hilbert[n_Integer] := Table[1/(i + j + 1), {i, n}, {j, n}]; Table[ 1 / Det[ Hilbert[n]], {n, 1, 8}] (* Robert G. Wilson v, Mar 13 2004 *)
    Table[(2*n+1)!!*(n!*Product[(2*k)!/k!/(k+1)!,{k,0,n}])^2,{n,1,11}] (* Alexander Adamchuk, May 17 2006 *)
    Table[2^(2*n^2+2*n-1/12) * Glaisher^3 * BarnesG[n+3/2]^2 *(n!)^2 *(2*n+1)!!/(E^(1/4)*Pi^(n+1/2)*BarnesG[n+3]^2), {n, 1, 11}] (* Vaclav Kotesovec, Mar 09 2014 *)
  • PARI
    for(n=1,10,print1(1/matdet(matrix(n,n,i,j,1/(i+j+1))),","))

Formula

a(n) = (2*n+1)!!*(n!*Product[(2*k)!/k!/(k+1)!,{k,0,n}])^2. a(n) = (2*n+1)!!*(n!*A003046(n))^2, where A003046(n)is the Product of first n Catalan numbers A000108(n). a(n) = (2*n+1)!*n!/(2^n)*A003046(n)^2. - Alexander Adamchuk, May 17 2006
a(n) ~ A^3 * 2^(2*n^2+3*n+11/12) / (exp(1/4) * n^(7/4) * Pi^(n+1)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014

A268646 O.g.f.: 1/(1 - C(1)x/(1 - C(2)x/(1 - C(3)x/(1 - C(4)x/(1 - C(5)x/(1 - C(6)x/(1 -...))))))), a continued fraction, where C(n) are the Catalan numbers A000108.

Original entry on oeis.org

1, 1, 3, 19, 277, 11081, 1383243, 569441699, 791393701997, 3770885471695081, 62402464265309818563, 3626978195203590614565619, 747715555141652980441024051237, 551447343768097359581617325419468841, 1465935896222119146302554598601016693710363
Offset: 0

Views

Author

Benedict W. J. Irwin, Feb 09 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Series[1/(1+ContinuedFractionK[-CatalanNumber[k]*x,1, {k,1,50}]),{x,0,50}],n],{n,1,50}]

Formula

G.f.: 1/(1 - x/(1 - 2x/(1 - 5x/(1 - 14x/(1 - 42x/(1 -...)))))), by definition.
a(n) ~ c * A003046(n) ~ c * A^(3/2) * 2^(n^2+n-19/24) * exp(3*n/2-1/8) / (n^(3*n/2+15/8) * Pi^(n/2+1)), where A is the Glaisher-Kinkelin constant A074962 and c = 1/Product_{k>=1} (1 - 1/4^k) = 1/QPochhammer[1/4] = 1.452353642449597... - Vaclav Kotesovec, Aug 26 2017

Extensions

a(0) = 1 added by Peter Bala, Apr 17 2017

A342166 Product of first n Fubini numbers.

Original entry on oeis.org

1, 1, 3, 39, 2925, 1582425, 7410496275, 350464600333575, 191295845123076910125, 1355763582602823185129417625, 138623522325287867599380791765497875, 224935042709004795568466587349227029537282375, 6318777956744220129890735589019782971247629409914638125
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 03 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1,
          add(g(n-j)*binomial(n, j), j=1..n))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, a(n-1)*g(n)) end:
    seq(a(n), n=0..15);  # Alois P. Heinz, Mar 03 2021
  • Mathematica
    Table[Product[Sum[j!*StirlingS2[k, j], {j, 0, k}], {k, 1, n}], {n, 0, 12}]
    Table[Product[PolyLog[-k, 1/2]/2, {k, 1, n}], {n, 0, 12}]
    FoldList[Times, 1, Table[PolyLog[-n, 1/2]/2, {n, 1, 12}]]

Formula

a(n) = Product_{k=1..n} A000670(k).
a(n) ~ c * BarnesG(n+2) / (2^n * log(2)^(n*(n+3)/2)), where c = 0.960303470666951851619546415046950178638511457142008903473074598398282549...
a(n) ~ c * Pi^((n+1)/2) * n^(n^2/2 + n + 5/12) / (A * 2^((n-1)/2) * exp(3*n^2/4 + n - 1/12) * log(2)^(n*(n+3)/2)), where A is the Glaisher-Kinkelin constant A074962.

A386649 Product of first n central trinomial coefficients (A002426) for n > 0 with a(0) = 1.

Original entry on oeis.org

1, 1, 3, 21, 399, 20349, 2869209, 1127599137, 1248252244659, 3918263795984601, 35080215765450132753, 899912775031092255512709, 66403663756769266442027284401, 14140062564030204365431731967633341, 8713488333644640745496899895218790824407
Offset: 0

Views

Author

Paul D. Hanna, Aug 08 2025

Keywords

Comments

Conjecture: a(n) = A214589(n) - 2 for n >= 1, where A214589(n) is the number of n X n X n triangular 0..2 arrays with every horizontal row having the same average value.

Examples

			The central trinomial coefficients A002426(n) = [x^n] (1 + x + x^2)^n for n >= 0 begin [1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, ...], where a(n) equals the product of the terms A002426(0) through A002426(n).
		

Crossrefs

Programs

  • Mathematica
    Table[Product[3^k * Hypergeometric2F1[1/2, -k, 1, 4/3], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 09 2025 *)
  • PARI
    {a(n) = prod(k=0,n, polcoef((1 + x + x^2)^k, k) )}
    for(n=0,15,print1(a(n),", "))

Formula

a(n) = Product_{k=0..n} A002426(k) for n >= 0.
a(n) ~ c * 3^((n-1)*(n+3)/2) * exp(n/2) / (2^(n - 3/4) * Pi^(n/2 - 1/4) * n^(n/2 + 7/16)), where c = 1.123782729130753266489882099159237662230713685736... - Vaclav Kotesovec, Aug 09 2025

A386650 Product of first n quadrinomial coefficients (A005725) for n > 0 with a(0) = 1.

Original entry on oeis.org

1, 1, 3, 30, 930, 93930, 31560480, 35600221440, 136099646565120, 1776236487321381120, 79580723341459838319360, 12296654209275691297430868480, 6578267322410960919238807125534720, 12223446894741861497849104893155093176320, 79112201841847644246811045518121813092796661760
Offset: 0

Views

Author

Paul D. Hanna, Aug 08 2025

Keywords

Comments

Conjecture: 2*a(n) = A214590(n) - 2 for n >= 1, where A214590(n) is the number of nXnXn triangular 0..3 arrays with every horizontal row having the same average value.

Examples

			The quadrinomial coefficients A005725(n) = [x^n] (1 + x + x^2 + x^3)^n for n >= 0 begin [1, 1, 3, 10, 31, 101, 336, 1128, 3823, ...], where a(n) equals the product of the terms A005725(0) through A005725(n).
		

Crossrefs

Programs

  • Mathematica
    Table[Product[HypergeometricPFQ[{(1-k)/2, -k, -k/2}, {1/2, 1}, -1], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 09 2025 *)
  • PARI
    {a(n) = prod(k=0, n, polcoef((1 + x + x^2 + x^3)^k, k) )}
    for(n=0, 15, print1(a(n), ", "))

Formula

a(n) = Product_{k=0..n} A005725(k) for n >= 0.
a(n) ~ c * exp(n/2) * (11 + 217/(6371 + 624*sqrt(78))^(1/3) + (6371 + 624*sqrt(78))^(1/3))^(-1 + n/2 + n^2/2) * ((39 + (4563 - 78*sqrt(78))^(1/3) + (4563 + 78*sqrt(78))^(1/3))/13)^(n/2) / (2^(-11/4 + 2*n + n^2) * 3^((-3 + 2*n + n^2)/2) * Pi^(n/2 + 1/4) * n^((4290 - 1421*78^(2/3)/(804726 - 73709*sqrt(78))^(1/3) - (78*(804726 - 73709*sqrt(78)))^(1/3) + 4056*n)/8112)), where c = 0.77060824350557924602665408964165291884080801923663... - Vaclav Kotesovec, Aug 09 2025

A003047 a(n) = Catalan(n) * Product_{k = 0..n-1} a(k).

Original entry on oeis.org

1, 1, 2, 10, 280, 235200, 173859840000, 98238542885683200000000, 32169371027674057560745102540800000000000000000, 3518552669874927170883258602839130084576857453953842493259776000000000000000000000000000000000
Offset: 1

Views

Author

Keywords

References

  • D.-Z. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications, World Scientific, 2nd ed., 2000; p. 36.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A028580 for another version. Cf. A000108, A003046.

Formula

a(n) = ((4*n-6)*a(n-1)^2)/n, for n > 1. - Christian Krause, Oct 13 2023

A051575 a(n) = LCM { Catalan(0), ..., Catalan(n) }.

Original entry on oeis.org

1, 1, 2, 10, 70, 210, 4620, 60060, 60060, 1021020, 19399380, 19399380, 446185740, 2230928700, 13385572200, 388181593800, 12033629407800, 12033629407800, 12033629407800, 445244288088600, 445244288088600, 18255015811632600
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    LCM@@@CatalanNumber@Range[0, Range[0, 20]] (* Vladimir Reshetnikov, Nov 17 2015 *)
  • PARI
    a(n) = if(n>1, lcm(a(n-1), binomial(2*n, n)/(n+1)), 1) \\ David A. Corneth, Aug 23 2016
Previous Showing 11-20 of 25 results. Next