cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A349879 Expansion of Sum_{k>=0} k^4 * x^k/(1 - k * x).

Original entry on oeis.org

0, 1, 17, 114, 564, 2507, 10961, 49260, 231928, 1150781, 6017297, 33085294, 190777804, 1150650935, 7241707281, 47454741400, 323154690928, 2282779984281, 16700904481425, 126356632381834, 987303454919204, 7957133905597635, 66071772829234641
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2021

Keywords

Comments

In general, for s>=1, Sum_{k=0..n} k^(n-k+s) ~ sqrt(2*Pi) * ((n + s)/LambertW(exp(1)*(n + s)))^(1/2 + (n + s)*(1 - 1/LambertW(exp(1)*(n + s)))) / sqrt(1 + LambertW(exp(1)*(n + s))). - Vaclav Kotesovec, Dec 04 2021

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^(n - k + 4), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 04 2021 *)
  • PARI
    a(n, s=4, t=1) = sum(k=0, n, k^(t*(n-k)+s));
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^4*x^k/(1-k*x))))

Formula

a(n) = Sum_{k=0..n} k^(n-k+4).
a(n) ~ sqrt(2*Pi) * ((n + 4)/LambertW(exp(1)*(n + 4)))^(1/2 + (n + 4)*(1 - 1/LambertW(exp(1)*(n + 4)))) / sqrt(1 + LambertW(exp(1)*(n + 4))). - Vaclav Kotesovec, Dec 04 2021

A349882 Expansion of Sum_{k>=0} k^2 * x^k/(1 - k^2 * x).

Original entry on oeis.org

0, 1, 5, 26, 162, 1267, 12343, 145652, 2036148, 33192789, 622384729, 13263528350, 318121600694, 8517247764135, 252725694989611, 8258153081400856, 295515712276222952, 11523986940937975401, 487562536078882116717, 22291094729329088403298
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == n - k + 1 == 0, 1, k^(2*(n - k + 1))], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    a(n, s=2, t=2) = sum(k=0, n, k^(t*(n-k)+s));
    
  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^2*x^k/(1-k^2*x))))
    
  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^k/(1-(k+1)^2*x)))) \\ Seiichi Manyama, Jan 12 2023

Formula

a(n) = Sum_{k=0..n} k^(2*(n-k+1)).
a(n) = A234568(n+1) - 1. - Hugo Pfoertner, Dec 04 2021
a(n) ~ sqrt(Pi) * ((n+1)/LambertW(exp(1)*(n+1)))^(5/2 + 2*n - 2*(n+1)/LambertW(exp(1)*(n+1))) / sqrt(1 + LambertW(exp(1)*(n+1))). - Vaclav Kotesovec, Dec 04 2021
G.f.: Sum_{k>=1} x^k/(1 - (k+1)^2 * x). - Seiichi Manyama, Jan 12 2023

A351279 a(n) = Sum_{k=0..n} 2^k * k^(n-k).

Original entry on oeis.org

1, 2, 6, 18, 58, 202, 762, 3114, 13754, 65386, 332922, 1806506, 10398266, 63226858, 404640250, 2716838186, 19083233210, 139874994282, 1067462826874, 8464760754602, 69620304280890, 592925117961450, 5220996124450042, 47467755352580650, 445027186867923642
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[2^k * k^(n-k), {k, 1, n}]; Array[a, 25, 0] (* Amiram Eldar, Feb 06 2022 *)
  • PARI
    a(n) = sum(k=0, n, 2^k*k^(n-k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (2*x)^k/(1-k*x)))

Formula

G.f.: Sum_{k>=0} (2*x)^k/(1 - k*x).
a(n) ~ sqrt(2*Pi/(1 + LambertW(exp(1)*n/2))) * n^(n + 1/2) * exp(n/LambertW(exp(1)*n/2) - n) / LambertW(exp(1)*n/2)^(n + 1/2). - Vaclav Kotesovec, Feb 06 2022

A359659 a(n) = Sum_{k=0..n} k^(k * (n-k+1)).

Original entry on oeis.org

1, 2, 6, 45, 1051, 88602, 27121964, 37004504305, 198705527223757, 5595513387083114570, 686714367475480207331582, 468422339816915120237104999421, 1664212116512828935888786624225704855
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, k^(k*(n-k+1)));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-k^k*x)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k+1)^(k+1)*x)))

Formula

G.f.: Sum_{k>=0} (k * x)^k/(1 - k^k * x).
G.f.: Sum_{k>=0} x^k/(1 - (k+1)^(k+1) * x).
a(n) = A349893(n+1) - 1.

A113170 Ascending descending base exponent transform of odd numbers A005408.

Original entry on oeis.org

1, 4, 33, 376, 5665, 115356, 3014209, 95722288, 3619661121, 161338248820, 8349617508961, 493959321484584, 33041900704133473, 2479933070973253516, 207343189445230918785, 19175058576632809926496, 1949302342535131018462849, 216707770770991401785821668
Offset: 1

Views

Author

Jonathan Vos Post, Jan 06 2006

Keywords

Comments

A003101 is the ascending descending base exponent transform of natural numbers A000027. The ascending descending base exponent transform applied to the Fibonacci numbers is A113122; applied to the tribonacci numbers is A113153; applied to the Lucas numbers is A113154. The parity of this sequence cycles odd, even, odd, even, ... There is no nontrivial integer fixed point of the transform.

Examples

			a(2) = 4 because 1^3 + 3^1 = 1 + 3 = 4.
a(3) = 33 because 1^5 + 3^3 + 5^1 = 1 + 27 + 5 = 33.
a(4) = 406 because 1^7 + 3^5 + 5^3 + 7^1 = 1 + 243 + 125 + 7 = 376.
a(5) = 5665 because 1^9 + 3^7 + 5^5 + 7^3 + 9^1 = 5665.
a(6) = 115356 = 1^11 + 3^9 + 5^7 + 7^5 + 9^3 + 11^1.
a(7) = 3014209 = 1^13 + 3^11 + 5^9 + 7^7 + 9^5 + 11^3 + 13^1.
a(8) = 95722288 = 1^15 + 3^13 + 5^11 + 7^9 + 9^7 + 11^5 + 13^3 + 15^1.
a(9) = 3619661121 = 1^17 + 3^15 + 5^13 + 7^11 + 9^9 + 11^7 + 13^5 + 15^3 + 17^1.
a(10) = 161338248820 = 1^19 + 3^17 + 5^15 + 7^13 + 9^11 + 11^9 + 13^7 + 15^5 + 17^3 + 19^1.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(2 k + 1)^(2 n - 2 k + 1), {k, 1, n}], {n, 0, 10}] + 1 (* G. C. Greubel, May 18 2017 *)
  • PARI
    for(n=0,25, print1(1 + sum(k=1,n, (2*k+1)^(2*n-2*k+1)), ", ")) \\ G. C. Greubel, May 18 2017

Formula

a(1) = 1. For n>1: a(n) = Sum_{i=1..n} (2n+1)^(2n-i).

A351282 a(n) = Sum_{k=0..n} 3^k * k^(n-k).

Original entry on oeis.org

1, 3, 12, 48, 201, 885, 4116, 20298, 106365, 592455, 3503532, 21946620, 145210305, 1011726417, 7400390052, 56668826118, 453116188821, 3774297532467, 32682069679548, 293632972911048, 2732593851548985, 26299137526992525, 261387306941467188, 2679392140776188706
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[3^k*k^(n-k), {k, 0, n}], {n, 1, 25}]]
  • PARI
    a(n) = sum(k=0, n, 3^k*k^(n-k)); \\ Michel Marcus, Feb 06 2022

Formula

a(n) ~ sqrt(2*Pi/(1 + LambertW(exp(1)*n/3))) * n^(n + 1/2) * exp(n/LambertW(exp(1)*n/3) - n) / LambertW(exp(1)*n/3)^(n + 1/2).
G.f.: Sum_{k>=0} 3^k * x^k / (1 - k*x). - Ilya Gutkovskiy, Feb 06 2022

A121945 a(n) is the sum of the first n factorials in decreasing powers from n to 1. a(n) = Sum_{k = 1..n} k!^(n-k+1).

Original entry on oeis.org

1, 3, 11, 69, 929, 30273, 2591057, 614059329, 423463272449, 907403624202753, 6082394749206781697, 140440480114401911810049, 10845109029138237198786147329, 3088811811740393517911301490890753, 3220352134317904958924570965080200574977, 12657255883388612328426763834234183884771442689
Offset: 1

Views

Author

Tanya Khovanova, Sep 03 2006

Keywords

Crossrefs

Similar to A003101 = Sum_{k = 1..n} (n-k+1)^k - only with inserted factorials.

Programs

  • GAP
    List([1..20], n-> Sum([1..n], j-> Factorial(j)^(n-j+1)) ); # G. C. Greubel, Oct 07 2019
  • Magma
    [(&+[Factorial(j)^(n-j+1): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Oct 07 2019
    
  • Maple
    seq(add(factorial(j)^(n-j+1), j=1..n), n=1..20); # G. C. Greubel, Oct 07 2019
  • Mathematica
    Table[Sum[Factorial[i]^(n-i+1), {i, n}], {n, 20}]
  • PARI
    vector(20, n, sum(j=1, n, (j!)^(n-j+1)) ) \\ G. C. Greubel, Oct 07 2019
    
  • Sage
    [sum(factorial(j)^(n-j+1) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Oct 07 2019
    

Extensions

More terms from G. C. Greubel, Oct 07 2019

A130425 a(n) = numerator of Sum_{k=1..n} 1/k^(n+1-k).

Original entry on oeis.org

1, 3, 19, 107, 1471, 164059, 65442581, 26560388929, 10901416818161, 4504891039128649, 20562691778919031051, 94108143760454361244249, 5609165278757040127506253363, 334755533004517896353486403105731
Offset: 1

Views

Author

Leroy Quet, May 26 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[1/k^(n + 1 - k), {k, 1, n}]], {n, 1, 20}] (* Stefan Steinerberger, May 30 2007 *)

Extensions

More terms from Stefan Steinerberger, May 30 2007

A130426 a(n) = denominator of Sum_{k=1..n} 1/k^(n+1-k).

Original entry on oeis.org

1, 2, 12, 72, 1080, 129600, 54432000, 22861440000, 9601804800000, 4032758016000000, 18631342033920000000, 86076800196710400000000, 5169772619814426624000000000, 310496543546054463037440000000000
Offset: 1

Views

Author

Leroy Quet, May 26 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Denominator[Sum[1/k^(n + 1 - k), {k, 1, n}]], {n, 1, 20}] (* Stefan Steinerberger, May 30 2007 *)

Extensions

More terms from Stefan Steinerberger, May 30 2007

A341436 Numbers k such that k divides Sum_{j=1..k} j^(k+1-j).

Original entry on oeis.org

1, 5, 16, 208, 688, 784, 2864, 9555, 17776, 81239
Offset: 1

Views

Author

Seiichi Manyama, Feb 11 2021

Keywords

Comments

Numbers k such that k divides A003101(k).
a(11) > 10^5.

Examples

			1^5 + 2^4 + 3^3 + 4^2 + 5^1 = 65 = 5 * 13. So 5 is a term.
		

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[Sum[PowerMod[k, n + 1 - k, n], {k, 1, n}], n] == 0, Print[n]], {n, 1, 3000}] (* Vaclav Kotesovec, Feb 12 2021 *)
  • PARI
    isok(n) = sum(k=1, n, Mod(k, n)^(n+1-k))==0;
Previous Showing 21-30 of 31 results. Next