A349879
Expansion of Sum_{k>=0} k^4 * x^k/(1 - k * x).
Original entry on oeis.org
0, 1, 17, 114, 564, 2507, 10961, 49260, 231928, 1150781, 6017297, 33085294, 190777804, 1150650935, 7241707281, 47454741400, 323154690928, 2282779984281, 16700904481425, 126356632381834, 987303454919204, 7957133905597635, 66071772829234641
Offset: 0
-
Table[Sum[k^(n - k + 4), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 04 2021 *)
-
a(n, s=4, t=1) = sum(k=0, n, k^(t*(n-k)+s));
-
my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^4*x^k/(1-k*x))))
A349882
Expansion of Sum_{k>=0} k^2 * x^k/(1 - k^2 * x).
Original entry on oeis.org
0, 1, 5, 26, 162, 1267, 12343, 145652, 2036148, 33192789, 622384729, 13263528350, 318121600694, 8517247764135, 252725694989611, 8258153081400856, 295515712276222952, 11523986940937975401, 487562536078882116717, 22291094729329088403298
Offset: 0
-
a[n_] := Sum[If[k == n - k + 1 == 0, 1, k^(2*(n - k + 1))], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 04 2021 *)
-
a(n, s=2, t=2) = sum(k=0, n, k^(t*(n-k)+s));
-
my(N=20, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^2*x^k/(1-k^2*x))))
-
my(N=20, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^k/(1-(k+1)^2*x)))) \\ Seiichi Manyama, Jan 12 2023
A351279
a(n) = Sum_{k=0..n} 2^k * k^(n-k).
Original entry on oeis.org
1, 2, 6, 18, 58, 202, 762, 3114, 13754, 65386, 332922, 1806506, 10398266, 63226858, 404640250, 2716838186, 19083233210, 139874994282, 1067462826874, 8464760754602, 69620304280890, 592925117961450, 5220996124450042, 47467755352580650, 445027186867923642
Offset: 0
-
a[0] = 1; a[n_] := Sum[2^k * k^(n-k), {k, 1, n}]; Array[a, 25, 0] (* Amiram Eldar, Feb 06 2022 *)
-
a(n) = sum(k=0, n, 2^k*k^(n-k));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (2*x)^k/(1-k*x)))
A359659
a(n) = Sum_{k=0..n} k^(k * (n-k+1)).
Original entry on oeis.org
1, 2, 6, 45, 1051, 88602, 27121964, 37004504305, 198705527223757, 5595513387083114570, 686714367475480207331582, 468422339816915120237104999421, 1664212116512828935888786624225704855
Offset: 0
-
a(n) = sum(k=0, n, k^(k*(n-k+1)));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-k^k*x)))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k+1)^(k+1)*x)))
A113170
Ascending descending base exponent transform of odd numbers A005408.
Original entry on oeis.org
1, 4, 33, 376, 5665, 115356, 3014209, 95722288, 3619661121, 161338248820, 8349617508961, 493959321484584, 33041900704133473, 2479933070973253516, 207343189445230918785, 19175058576632809926496, 1949302342535131018462849, 216707770770991401785821668
Offset: 1
a(2) = 4 because 1^3 + 3^1 = 1 + 3 = 4.
a(3) = 33 because 1^5 + 3^3 + 5^1 = 1 + 27 + 5 = 33.
a(4) = 406 because 1^7 + 3^5 + 5^3 + 7^1 = 1 + 243 + 125 + 7 = 376.
a(5) = 5665 because 1^9 + 3^7 + 5^5 + 7^3 + 9^1 = 5665.
a(6) = 115356 = 1^11 + 3^9 + 5^7 + 7^5 + 9^3 + 11^1.
a(7) = 3014209 = 1^13 + 3^11 + 5^9 + 7^7 + 9^5 + 11^3 + 13^1.
a(8) = 95722288 = 1^15 + 3^13 + 5^11 + 7^9 + 9^7 + 11^5 + 13^3 + 15^1.
a(9) = 3619661121 = 1^17 + 3^15 + 5^13 + 7^11 + 9^9 + 11^7 + 13^5 + 15^3 + 17^1.
a(10) = 161338248820 = 1^19 + 3^17 + 5^15 + 7^13 + 9^11 + 11^9 + 13^7 + 15^5 + 17^3 + 19^1.
-
Table[Sum[(2 k + 1)^(2 n - 2 k + 1), {k, 1, n}], {n, 0, 10}] + 1 (* G. C. Greubel, May 18 2017 *)
-
for(n=0,25, print1(1 + sum(k=1,n, (2*k+1)^(2*n-2*k+1)), ", ")) \\ G. C. Greubel, May 18 2017
A351282
a(n) = Sum_{k=0..n} 3^k * k^(n-k).
Original entry on oeis.org
1, 3, 12, 48, 201, 885, 4116, 20298, 106365, 592455, 3503532, 21946620, 145210305, 1011726417, 7400390052, 56668826118, 453116188821, 3774297532467, 32682069679548, 293632972911048, 2732593851548985, 26299137526992525, 261387306941467188, 2679392140776188706
Offset: 0
-
Join[{1}, Table[Sum[3^k*k^(n-k), {k, 0, n}], {n, 1, 25}]]
-
a(n) = sum(k=0, n, 3^k*k^(n-k)); \\ Michel Marcus, Feb 06 2022
A121945
a(n) is the sum of the first n factorials in decreasing powers from n to 1. a(n) = Sum_{k = 1..n} k!^(n-k+1).
Original entry on oeis.org
1, 3, 11, 69, 929, 30273, 2591057, 614059329, 423463272449, 907403624202753, 6082394749206781697, 140440480114401911810049, 10845109029138237198786147329, 3088811811740393517911301490890753, 3220352134317904958924570965080200574977, 12657255883388612328426763834234183884771442689
Offset: 1
Similar to
A003101 = Sum_{k = 1..n} (n-k+1)^k - only with inserted factorials.
-
List([1..20], n-> Sum([1..n], j-> Factorial(j)^(n-j+1)) ); # G. C. Greubel, Oct 07 2019
-
[(&+[Factorial(j)^(n-j+1): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Oct 07 2019
-
seq(add(factorial(j)^(n-j+1), j=1..n), n=1..20); # G. C. Greubel, Oct 07 2019
-
Table[Sum[Factorial[i]^(n-i+1), {i, n}], {n, 20}]
-
vector(20, n, sum(j=1, n, (j!)^(n-j+1)) ) \\ G. C. Greubel, Oct 07 2019
-
[sum(factorial(j)^(n-j+1) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Oct 07 2019
A130425
a(n) = numerator of Sum_{k=1..n} 1/k^(n+1-k).
Original entry on oeis.org
1, 3, 19, 107, 1471, 164059, 65442581, 26560388929, 10901416818161, 4504891039128649, 20562691778919031051, 94108143760454361244249, 5609165278757040127506253363, 334755533004517896353486403105731
Offset: 1
-
Table[Numerator[Sum[1/k^(n + 1 - k), {k, 1, n}]], {n, 1, 20}] (* Stefan Steinerberger, May 30 2007 *)
A130426
a(n) = denominator of Sum_{k=1..n} 1/k^(n+1-k).
Original entry on oeis.org
1, 2, 12, 72, 1080, 129600, 54432000, 22861440000, 9601804800000, 4032758016000000, 18631342033920000000, 86076800196710400000000, 5169772619814426624000000000, 310496543546054463037440000000000
Offset: 1
-
Table[Denominator[Sum[1/k^(n + 1 - k), {k, 1, n}]], {n, 1, 20}] (* Stefan Steinerberger, May 30 2007 *)
A341436
Numbers k such that k divides Sum_{j=1..k} j^(k+1-j).
Original entry on oeis.org
1, 5, 16, 208, 688, 784, 2864, 9555, 17776, 81239
Offset: 1
1^5 + 2^4 + 3^3 + 4^2 + 5^1 = 65 = 5 * 13. So 5 is a term.
-
Do[If[Mod[Sum[PowerMod[k, n + 1 - k, n], {k, 1, n}], n] == 0, Print[n]], {n, 1, 3000}] (* Vaclav Kotesovec, Feb 12 2021 *)
-
isok(n) = sum(k=1, n, Mod(k, n)^(n+1-k))==0;
Comments