A309618
a(n) = Sum_{k=0..floor(n/2)} k! * 2^k * (n - 2*k)!.
Original entry on oeis.org
1, 1, 4, 8, 36, 140, 832, 5376, 42432, 374592, 3720960, 40694784, 486679296, 6310114560, 88168366080, 1320468480000, 21101183631360, 358354687426560, 6444941507297280, 122367252835860480, 2445878526994022400, 51337143210820239360, 1128918790687649955840
Offset: 0
-
Table[Sum[k!*2^k*(n-2*k)!, {k, 0, Floor[n/2]}], {n, 0, 25}]
nmax = 25; CoefficientList[Series[Sum[k!*x^k, {k, 0, nmax}] * Sum[k!*2^k*x^(2 k), {k, 0, nmax}], {x, 0, nmax}], x]
A358446
a(n) = n! * Sum_{k=0..floor(n/2)} 1/binomial(n-k, k).
Original entry on oeis.org
1, 1, 4, 9, 56, 190, 1704, 7644, 93120, 516240, 8136000, 53523360, 1047548160, 7961241600, 187132377600, 1611967392000, 44311886438400, 426483893606400, 13428757601280000, 142790947407360000, 5066854992138240000, 58981696577556480000, 2328441680297779200000
Offset: 0
-
egf := (2*x+1)/((x-1)*(x+1)*(x^2-x-1))-(x*log((1-x)^2*(x+1)))/(-x^2+x+1)^2:
ser := series(egf, x, 22): seq(n!*coeff(ser, x, n), n = 0..20); # Peter Luschny, Nov 17 2022
-
a(n):=factorial(n)*sum(1/binomial(n-k,k),k,0,floor(n/2));
-
def A358446(n):
return sum(A143216(n, k) // A344391(n, k) for k in range((n+2)//2))
print([A358446(n) for n in range(23)]) # Peter Luschny, Nov 17 2022
A090319
Fifth column (k=4) of triangle A084938.
Original entry on oeis.org
1, 4, 14, 52, 217, 1040, 5768, 36992, 272584, 2285184, 21550656, 226071744, 2611146384, 32911082496, 449243785728, 6598780563456, 103734755882496, 1737181702840320, 30866291090657280, 579859321408266240
Offset: 0
-
B:=Binomial;; List([0..20], n-> Sum([0..n], k-> Sum([0..k], m-> Sum([0..m], j-> Factorial(n)/(B(n,k)*B(k,m)*B(m,j)) )))); # G. C. Greubel, Dec 29 2019
-
F:=Factorial; B:=Binomial; [ (&+[(&+[(&+[F(n)/(B(n,k)*B(k,m)*B(m,j)): j in [0..m]]): m in [0..k]]): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 29 2019
-
seq( (n+3)!*add(add(add( Beta(k+3,n-k+1)*Beta(m+2,k-m+1)*Beta(j+1,m-j+1), j=0..m), m=0..k), k=0..n), n=0..20); # G. C. Greubel, Dec 29 2019
-
Table[(n+3)!*Sum[Beta[k+3, n-k+1]*Beta[m+2, k-m+1]*Beta[j+1, m-j+1], {k,0,n}, {m,0,k}, {j,0,m}], {n,0,20}] (* G. C. Greubel, Dec 29 2019 *)
-
vector(21, n, my(b=binomial); sum(k=0,n-1, sum(m=0,k, sum(j=0,m, (n-1)!/(b(n-1,k)*b(k,m)*b(m,j)) )))) \\ G. C. Greubel, Dec 29 2019
-
b=binomial; [sum(sum(sum(factorial(n)/(b(n,k)*b(k,m)*b(m,j)) for j in (0..m)) for m in (0..k)) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Dec 29 2019
A186374
Number of strong fixed blocks in all the permutations of [n] (see first comment for definition).
Original entry on oeis.org
0, 1, 1, 3, 11, 48, 248, 1500, 10476, 83328, 745344, 7413120, 81187200, 970928640, 12589240320, 175900757760, 2634526944000, 42103369728000, 715107004416000, 12862666543104000, 244249409359872000, 4882687056543744000, 102496533840691200000
Offset: 0
a(3) = 3 because in [123], [1]32, 21[3], 231, 312, 321 we have 1 + 1 + 1 + 0 + 0 + 0 strong fixed blocks (shown between square brackets).
-
a:= proc(n) option remember; `if`(n<5, [0, 1, 1, 3, 11][n+1],
((3*n^2-12*n+2)*a(n-1) -(n^3-3*n^2-8*n+23)*a(n-2)
+(n-3)^3*a(n-3)) / (2*n-8))
end:
seq(a(n), n=0..24); # Alois P. Heinz, May 22 2013
-
Flatten[{0, 1, Table[(n-1)! + Sum[k!*(n-2-k)!*(n-2-k), {k,0,n-2}], {n,2,20}]}] (* Vaclav Kotesovec, Aug 04 2015 *)
Flatten[{0, Simplify[Table[Gamma[n] * (1 - (n-2)*(I*Pi/2^n + LerchPhi[2, 1, n])), {n, 1, 20}]]}] (* Vaclav Kotesovec, Aug 04 2015 *)
A305577
a(n) = Sum_{k=0..n} k!!*(n - k)!!.
Original entry on oeis.org
1, 2, 5, 10, 26, 58, 167, 414, 1324, 3606, 12729, 37674, 145578, 463770, 1944879, 6614190, 29852856, 107616150, 518782545, 1970493210, 10077228270, 40125873690, 216425656215, 899557170750, 5091758227620, 22011865939350, 130202223160905, 583641857191050, 3594820517111250
Offset: 0
-
a:= proc(n) option remember; `if`(n<4, n^2+1,
((3*n^2-4*n-2)*a(n-2) +(n+1)*a(n-3)
-2*a(n-1) -(n-1)^2*n*a(n-4))/(2*n-4))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Jun 14 2018
-
Table[Sum[k!! (n - k)!!, {k, 0, n}], {n, 0, 28}]
nmax = 28; CoefficientList[Series[Sum[k!! x^k, {k, 0, nmax}]^2, {x, 0, nmax}], x]
A333370
Convolution of primorial numbers (A002110) with themselves.
Original entry on oeis.org
1, 4, 16, 84, 576, 5820, 72720, 1181460, 21984480, 493882620, 13996733520, 430612001820, 15742074348000, 641147559872820, 27488197348531920, 1286344285877911260, 67817877972050366160, 3984226025421591129180, 242703493548359285922480, 16211176424801583698573100
Offset: 0
-
p:= proc(n) option remember; `if`(n<1, 1, ithprime(n)*p(n-1)) end:
a:= n-> add(p(i)*p(n-i), i=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 17 2020
-
primorial[n_] := Product[Prime[k], {k, 1, n}]; a[n_] := Sum[primorial[k] primorial[n - k], {k, 0, n}]; Table[a[n], {n, 0, 19}]
A357240
Expansion of e.g.f. 2 * (exp(x) - 1) / (exp(exp(x) - 1) + 1).
Original entry on oeis.org
0, 1, 0, -2, -5, -4, 32, 225, 794, 190, -22291, -200298, -920244, 924223, 65848880, 716920754, 3831260555, -13147083976, -575844827780, -7162425813919, -40755845041730, 320194436283162, 11810647258173653, 161108090793013130, 896865861205240824, -14305712791762925929, -487306962045115504436
Offset: 0
-
b:= proc(n, m) option remember; `if`(n=0, `if`(m=0, 0,
m*euler(m-1, 0)), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..26); # Alois P. Heinz, Jun 23 2023
-
nmax = 26; CoefficientList[Series[2 (Exp[x] - 1)/(Exp[Exp[x] - 1] + 1), {x, 0, nmax}], x] Range[0, nmax]!
Table[2 Sum[StirlingS2[n, k] (1 - 2^k) BernoulliB[k], {k, 0, n}], {n, 0, 26}]
-
a(n) = 2*sum(k=0, n, stirling(n, k, 2)*(1-2^k)*bernfrac(k)); \\ Michel Marcus, Sep 20 2022
A173476
Triangle T(n, k) = 1 + (k!)^2 - 2*k!*(n-k)! + ((n-k)!)^2, read by rows.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 26, 2, 2, 26, 530, 26, 1, 26, 530, 14162, 530, 17, 17, 530, 14162, 516962, 14162, 485, 1, 485, 14162, 516962, 25391522, 516962, 13925, 325, 325, 13925, 516962, 25391522, 1625621762, 25391522, 515525, 12997, 1, 12997, 515525, 25391522, 1625621762
Offset: 0
Triangle begins as:
1;
1, 1;
2, 1, 2;
26, 2, 2, 26;
530, 26, 1, 26, 530;
14162, 530, 17, 17, 530, 14162;
516962, 14162, 485, 1, 485, 14162, 516962;
25391522, 516962, 13925, 325, 325, 13925, 516962, 25391522;
1625621762, 25391522, 515525, 12997, 1, 12997, 515525, 25391522, 1625621762;
-
[(Factorial(n-k) -Factorial(k))^2 +1: k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 19 2021
-
Table[((n-k)! -k!)^2 +1, {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 19 2021 *)
-
flatten([[(factorial(n-k) -factorial(k))^2 +1 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 19 2021
A235802
Expansion of e.g.f.: 1/(1 - x)^(2/(2-x)).
Original entry on oeis.org
1, 1, 3, 12, 61, 375, 2697, 22176, 204977, 2102445, 23685615, 290642220, 3857751573, 55063797243, 840956549517, 13682498891040, 236257301424225, 4314883836968505, 83102361300891963, 1683252077760375660, 35770269996769203405, 795749735451309432255
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 96*x^3/3! + 976*x^4/4! + 12000*x^5/5! + ...
where the logarithm involves sums of reciprocal binomial coefficients:
log(A(x)) = x*(1) + x^2/2*(1 + 1) + x^3/3*(1 + 1/2 + 1) + x^4/4*(1 + 1/3 + 1/3 + 1) + x^5/5*(1 + 1/4 + 1/6 + 1/4 + 1) + x^6/6*(1 + 1/5 + 1/10 + 1/10 + 1/5 + 1) + ...
Explicitly, the logarithm begins:
log(A(x)) = x + 2*x^2/2! + 5*x^3/3! + 16*x^4/4! + 64*x^5/5! + 312*x^6/6! + 1812*x^7/7! + 12288*x^8/8! + ... + A003149(n-1)*x^n/n! + ...
-
R:=PowerSeriesRing(Rationals(), 50); Coefficients(R!(Laplace( 1/(1-x)^(2/(2-x)) ))); // G. C. Greubel, Jul 12 2023
-
CoefficientList[Series[1/(1-x)^(2/(2-x)), {x,0,20}], x]*Range[0,20]! (* Vaclav Kotesovec, Jul 13 2014 *)
-
{a(n)=n!*polcoeff(exp(sum(m=1, n, x^m/m*sum(k=0, m-1, 1/binomial(m-1, k))) +x*O(x^n)), n)}
for(n=0,25,print1(a(n),", "))
-
{a(n)=n!*polcoeff(1/(1-x+x*O(x^n))^(2/(2-x)), n)}
for(n=0,25,print1(a(n),", "))
-
m=50
def f(x): return exp(sum(sum( 1/binomial(n-1,k) for k in range(n))*x^n/n for n in range(1,m+2)))
def A235802_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).egf_to_ogf().list()
A235802_list(m) # G. C. Greubel, Jul 12 2023
A279055
Self-convolution of squares of factorial numbers (A001044).
Original entry on oeis.org
1, 2, 9, 80, 1240, 30240, 1071504, 51996672, 3307723776, 266872320000, 26615381760000, 3214252921651200, 462189467175321600, 78024380924038348800, 15279632043682406400000, 3435553774431004262400000, 879010223384483132866560000, 253916900613208108255150080000
Offset: 0
-
Table[Sum[(k!*(n-k)!)^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 05 2016 *)
Comments