cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A309618 a(n) = Sum_{k=0..floor(n/2)} k! * 2^k * (n - 2*k)!.

Original entry on oeis.org

1, 1, 4, 8, 36, 140, 832, 5376, 42432, 374592, 3720960, 40694784, 486679296, 6310114560, 88168366080, 1320468480000, 21101183631360, 358354687426560, 6444941507297280, 122367252835860480, 2445878526994022400, 51337143210820239360, 1128918790687649955840
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[k!*2^k*(n-2*k)!, {k, 0, Floor[n/2]}], {n, 0, 25}]
    nmax = 25; CoefficientList[Series[Sum[k!*x^k, {k, 0, nmax}] * Sum[k!*2^k*x^(2 k), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: B(x)*B(2*x^2), where B(x) is g.f. of A000142.
a(n) ~ n! * (1 + 2/n^2 + 2/n^3 + 10/n^4 + 50/n^5 + 250/n^6 + 1442/n^7 + 9514/n^8 + 68882/n^9 + 539098/n^10 + ...), for coefficients see A326983.

A358446 a(n) = n! * Sum_{k=0..floor(n/2)} 1/binomial(n-k, k).

Original entry on oeis.org

1, 1, 4, 9, 56, 190, 1704, 7644, 93120, 516240, 8136000, 53523360, 1047548160, 7961241600, 187132377600, 1611967392000, 44311886438400, 426483893606400, 13428757601280000, 142790947407360000, 5066854992138240000, 58981696577556480000, 2328441680297779200000
Offset: 0

Views

Author

Vladimir Kruchinin, Nov 16 2022

Keywords

Crossrefs

Programs

  • Maple
    egf := (2*x+1)/((x-1)*(x+1)*(x^2-x-1))-(x*log((1-x)^2*(x+1)))/(-x^2+x+1)^2:
    ser := series(egf, x, 22): seq(n!*coeff(ser, x, n), n = 0..20); # Peter Luschny, Nov 17 2022
  • Maxima
    a(n):=factorial(n)*sum(1/binomial(n-k,k),k,0,floor(n/2));
    
  • SageMath
    def A358446(n):
        return sum(A143216(n, k) // A344391(n, k) for k in range((n+2)//2))
    print([A358446(n) for n in range(23)]) # Peter Luschny, Nov 17 2022

Formula

E.g.f.: (2*x+1)/((x-1)*(x+1)*(x^2-x-1))-(x*log((1-x)^2*(x+1)))/(-x^2+x+1)^2.
a(n) ~ n! * (3 + (-1)^n)/2. - Vaclav Kotesovec, Nov 17 2022
a(n) = Sum_{k=0..floor(n/2)} A143216(n, k)/A344391(n, k). - Peter Luschny, Nov 17 2022

A090319 Fifth column (k=4) of triangle A084938.

Original entry on oeis.org

1, 4, 14, 52, 217, 1040, 5768, 36992, 272584, 2285184, 21550656, 226071744, 2611146384, 32911082496, 449243785728, 6598780563456, 103734755882496, 1737181702840320, 30866291090657280, 579859321408266240
Offset: 0

Views

Author

Philippe Deléham, Feb 05 2004

Keywords

Crossrefs

Cf. A084938.
Columns, for k = 0, 1, 2, 3 : A000007, A000142, A003149, A090595.

Programs

  • GAP
    B:=Binomial;; List([0..20], n-> Sum([0..n], k-> Sum([0..k], m-> Sum([0..m], j-> Factorial(n)/(B(n,k)*B(k,m)*B(m,j)) )))); # G. C. Greubel, Dec 29 2019
  • Magma
    F:=Factorial; B:=Binomial; [ (&+[(&+[(&+[F(n)/(B(n,k)*B(k,m)*B(m,j)): j in [0..m]]): m in [0..k]]): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    seq( (n+3)!*add(add(add( Beta(k+3,n-k+1)*Beta(m+2,k-m+1)*Beta(j+1,m-j+1), j=0..m), m=0..k), k=0..n), n=0..20); # G. C. Greubel, Dec 29 2019
  • Mathematica
    Table[(n+3)!*Sum[Beta[k+3, n-k+1]*Beta[m+2, k-m+1]*Beta[j+1, m-j+1], {k,0,n}, {m,0,k}, {j,0,m}], {n,0,20}] (* G. C. Greubel, Dec 29 2019 *)
  • PARI
    vector(21, n, my(b=binomial); sum(k=0,n-1, sum(m=0,k, sum(j=0,m, (n-1)!/(b(n-1,k)*b(k,m)*b(m,j)) )))) \\ G. C. Greubel, Dec 29 2019
    
  • Sage
    b=binomial; [sum(sum(sum(factorial(n)/(b(n,k)*b(k,m)*b(m,j)) for j in (0..m)) for m in (0..k)) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Dec 29 2019
    

Formula

a(n) = Sum_{k=0..n} A090595(k)*(n-k)!.
a(n) = Sum_{a+b+c+d = n} a!*b!*c!*d!.
a(n) = Sum_{k=0..n} A003149(k)*A003149(n-k).
G.f.: (Sum_{k>=0} k!*x^k)^4.
From G. C. Greubel, Dec 29 2019: (Start)
a(n) = (n+3)!*Sum_{k=0..n} Sum_{m=0..k} Sum_{j=0..m} Beta(k+3, n-k+1)*Beta(m+2, k-m+1)*Beta(j+1, m-j+1), where Beta(x,y) is the Beta function.
a(n) = Sum_{k=0..n} Sum_{m=0..k} Sum_{j=0..m} n!/(binomial(n,k) * binomial(k,m) * binomial(m,j)). (End)

A186374 Number of strong fixed blocks in all the permutations of [n] (see first comment for definition).

Original entry on oeis.org

0, 1, 1, 3, 11, 48, 248, 1500, 10476, 83328, 745344, 7413120, 81187200, 970928640, 12589240320, 175900757760, 2634526944000, 42103369728000, 715107004416000, 12862666543104000, 244249409359872000, 4882687056543744000, 102496533840691200000
Offset: 0

Views

Author

Emeric Deutsch, Apr 18 2011

Keywords

Comments

A fixed block of a permutation p is a maximal sequence of consecutive fixed points of p. For example, the permutation 213486759 has 3 fixed blocks: 34, 67, and 9. A fixed block f of a permutation p is said to be strong if all the entries to the left (right) of f are smaller (larger) than all the entries of f. In the above example, only 34 and 9 are strong fixed blocks.

Examples

			a(3) = 3 because in [123], [1]32, 21[3], 231, 312, 321 we have 1 + 1 + 1 + 0 + 0 + 0 strong fixed blocks (shown between square brackets).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [0, 1, 1, 3, 11][n+1],
          ((3*n^2-12*n+2)*a(n-1) -(n^3-3*n^2-8*n+23)*a(n-2)
           +(n-3)^3*a(n-3)) / (2*n-8))
        end:
    seq(a(n), n=0..24);  # Alois P. Heinz, May 22 2013
  • Mathematica
    Flatten[{0, 1, Table[(n-1)! + Sum[k!*(n-2-k)!*(n-2-k), {k,0,n-2}], {n,2,20}]}] (* Vaclav Kotesovec, Aug 04 2015 *)
    Flatten[{0, Simplify[Table[Gamma[n] * (1 - (n-2)*(I*Pi/2^n + LerchPhi[2, 1, n])), {n, 1, 20}]]}] (* Vaclav Kotesovec, Aug 04 2015 *)

Formula

a(n) = Sum(k*A186373(n,k), k>=0).
Apparently, a(n) = A003149(n-1)-A003149(n-2) or, equivalently, a(n)=(n-1)! + Sum(k!*(n-2-k)!*(n-2-k), k=0..n-2).
a(n) ~ 2 * (n-1)! * ((1 + 1/n^2 + 7/n^3 + 49/n^4 + 391/n^5 + 3601/n^6 + 37927/n^7 + 451249/n^8 + 5995591/n^9 + 88073041/n^10)). - Vaclav Kotesovec, Mar 17 2015
Recurrence (for n>=3): 2*(n^2 - 7*n + 11)*a(n) = (n-2)*(3*n^2 - 17*n + 17)*a(n-1) - (n-2)^2*(n^2 - 5*n + 5)*a(n-2). - Vaclav Kotesovec, Aug 04 2015

Extensions

a(11)-a(22) from Alois P. Heinz, May 22 2013

A305577 a(n) = Sum_{k=0..n} k!!*(n - k)!!.

Original entry on oeis.org

1, 2, 5, 10, 26, 58, 167, 414, 1324, 3606, 12729, 37674, 145578, 463770, 1944879, 6614190, 29852856, 107616150, 518782545, 1970493210, 10077228270, 40125873690, 216425656215, 899557170750, 5091758227620, 22011865939350, 130202223160905, 583641857191050, 3594820517111250
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 05 2018

Keywords

Comments

Convolution of A006882 with itself.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, n^2+1,
          ((3*n^2-4*n-2)*a(n-2) +(n+1)*a(n-3)
           -2*a(n-1) -(n-1)^2*n*a(n-4))/(2*n-4))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 14 2018
  • Mathematica
    Table[Sum[k!! (n - k)!!, {k, 0, n}], {n, 0, 28}]
    nmax = 28; CoefficientList[Series[Sum[k!! x^k, {k, 0, nmax}]^2, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k>=0} k!!*x^k)^2.

A333370 Convolution of primorial numbers (A002110) with themselves.

Original entry on oeis.org

1, 4, 16, 84, 576, 5820, 72720, 1181460, 21984480, 493882620, 13996733520, 430612001820, 15742074348000, 641147559872820, 27488197348531920, 1286344285877911260, 67817877972050366160, 3984226025421591129180, 242703493548359285922480, 16211176424801583698573100
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 17 2020

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, ithprime(n)*p(n-1)) end:
    a:= n-> add(p(i)*p(n-i), i=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 17 2020
  • Mathematica
    primorial[n_] := Product[Prime[k], {k, 1, n}]; a[n_] := Sum[primorial[k] primorial[n - k], {k, 0, n}]; Table[a[n], {n, 0, 19}]

Formula

G.f.: (Sum_{k>=0} prime(k)# * x^k)^2, where prime()# = A002110.
a(n) = Sum_{k=0..n} prime(k)# * prime(n-k)#.

A357240 Expansion of e.g.f. 2 * (exp(x) - 1) / (exp(exp(x) - 1) + 1).

Original entry on oeis.org

0, 1, 0, -2, -5, -4, 32, 225, 794, 190, -22291, -200298, -920244, 924223, 65848880, 716920754, 3831260555, -13147083976, -575844827780, -7162425813919, -40755845041730, 320194436283162, 11810647258173653, 161108090793013130, 896865861205240824, -14305712791762925929, -487306962045115504436
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2022

Keywords

Comments

Stirling transform of the Genocchi numbers (of first kind, A036968).

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, `if`(m=0, 0,
          m*euler(m-1, 0)), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..26);  # Alois P. Heinz, Jun 23 2023
  • Mathematica
    nmax = 26; CoefficientList[Series[2 (Exp[x] - 1)/(Exp[Exp[x] - 1] + 1), {x, 0, nmax}], x] Range[0, nmax]!
    Table[2 Sum[StirlingS2[n, k] (1 - 2^k) BernoulliB[k], {k, 0, n}], {n, 0, 26}]
  • PARI
    a(n) = 2*sum(k=0, n, stirling(n, k, 2)*(1-2^k)*bernfrac(k)); \\ Michel Marcus, Sep 20 2022

Formula

a(n) = 2 * Sum_{k=0..n} Stirling2(n,k) * (1 - 2^k) * Bernoulli(k).
a(n) ~ Pi^(3/2) * 2^(n + 7/2) * n^(n + 1/2) * (cos(n*arctan(2*arctan(Pi)/log(1 + Pi^2))) * (Pi*log(1 + Pi^2) + 2*arctan(Pi)) + (log(1 + Pi^2) - 2*Pi*arctan(Pi)) * sin(n*arctan(2*arctan(Pi)/log(1 + Pi^2)))) / ((1 + Pi^2) * exp(n) * (4*arctan(Pi)^2 + log(1 + Pi^2)^2)^(n/2 + 1)). - Vaclav Kotesovec, Oct 04 2022

A173476 Triangle T(n, k) = 1 + (k!)^2 - 2*k!*(n-k)! + ((n-k)!)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 26, 2, 2, 26, 530, 26, 1, 26, 530, 14162, 530, 17, 17, 530, 14162, 516962, 14162, 485, 1, 485, 14162, 516962, 25391522, 516962, 13925, 325, 325, 13925, 516962, 25391522, 1625621762, 25391522, 515525, 12997, 1, 12997, 515525, 25391522, 1625621762
Offset: 0

Views

Author

Roger L. Bagula, Feb 19 2010

Keywords

Examples

			Triangle begins as:
           1;
           1,        1;
           2,        1,      2;
          26,        2,      2,    26;
         530,       26,      1,    26, 530;
       14162,      530,     17,    17, 530, 14162;
      516962,    14162,    485,     1, 485, 14162, 516962;
    25391522,   516962,  13925,   325, 325, 13925, 516962, 25391522;
  1625621762, 25391522, 515525, 12997,   1, 12997, 515525, 25391522, 1625621762;
		

Crossrefs

Programs

  • Magma
    [(Factorial(n-k) -Factorial(k))^2 +1: k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 19 2021
  • Mathematica
    Table[((n-k)! -k!)^2 +1, {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 19 2021 *)
  • Sage
    flatten([[(factorial(n-k) -factorial(k))^2 +1 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 19 2021
    

Formula

T(n, k) = 1 + ( (n-k)! - k! )^2.
Sum_{k=0..n} T(n, k) = 1 + n + 2*A061062(n) - 2*A003149(n). - G. C. Greubel, Feb 19 2021

Extensions

Edited by G. C. Greubel, Feb 19 2021

A235802 Expansion of e.g.f.: 1/(1 - x)^(2/(2-x)).

Original entry on oeis.org

1, 1, 3, 12, 61, 375, 2697, 22176, 204977, 2102445, 23685615, 290642220, 3857751573, 55063797243, 840956549517, 13682498891040, 236257301424225, 4314883836968505, 83102361300891963, 1683252077760375660, 35770269996769203405, 795749735451309432255
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 96*x^3/3! + 976*x^4/4! + 12000*x^5/5! + ...
where the logarithm involves sums of reciprocal binomial coefficients:
log(A(x)) = x*(1) + x^2/2*(1 + 1) + x^3/3*(1 + 1/2 + 1) + x^4/4*(1 + 1/3 + 1/3 + 1) + x^5/5*(1 + 1/4 + 1/6 + 1/4 + 1) + x^6/6*(1 + 1/5 + 1/10 + 1/10 + 1/5 + 1) + ...
Explicitly, the logarithm begins:
log(A(x)) = x + 2*x^2/2! + 5*x^3/3! + 16*x^4/4! + 64*x^5/5! + 312*x^6/6! + 1812*x^7/7! + 12288*x^8/8! + ... + A003149(n-1)*x^n/n! + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50); Coefficients(R!(Laplace( 1/(1-x)^(2/(2-x)) ))); // G. C. Greubel, Jul 12 2023
    
  • Mathematica
    CoefficientList[Series[1/(1-x)^(2/(2-x)), {x,0,20}], x]*Range[0,20]! (* Vaclav Kotesovec, Jul 13 2014 *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1, n, x^m/m*sum(k=0, m-1, 1/binomial(m-1, k))) +x*O(x^n)), n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    {a(n)=n!*polcoeff(1/(1-x+x*O(x^n))^(2/(2-x)), n)}
    for(n=0,25,print1(a(n),", "))
    
  • SageMath
    m=50
    def f(x): return exp(sum(sum( 1/binomial(n-1,k) for k in range(n))*x^n/n for n in range(1,m+2)))
    def A235802_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).egf_to_ogf().list()
    A235802_list(m) # G. C. Greubel, Jul 12 2023

Formula

E.g.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n-1} 1/C(n-1,k) ).
E.g.f.: exp( Sum_{n>=1} A003149(n-1)*x^n/n! ), where A003149(n) = Sum_{k=0..n} k!*(n-k)!.
a(n) ~ n! * (n-2*log(n)). - Vaclav Kotesovec, Jul 13 2014

A279055 Self-convolution of squares of factorial numbers (A001044).

Original entry on oeis.org

1, 2, 9, 80, 1240, 30240, 1071504, 51996672, 3307723776, 266872320000, 26615381760000, 3214252921651200, 462189467175321600, 78024380924038348800, 15279632043682406400000, 3435553774431004262400000, 879010223384483132866560000, 253916900613208108255150080000
Offset: 0

Views

Author

Arman Maesumi, Dec 04 2016

Keywords

Comments

a(n) = (n!)^2 * Sum_{i=0..n} (binomial(n,i)^(-2)).
Consider a triangle ABC with area p. Let points X, Y, Z be randomly and uniformly chosen on sides BC, CA, BA. Let r = area of XYZ. Then the average or expected value of (r/p)^n = a(n)/(n!^2 * (n+1)^3).
a(n) = (3*(n+1)^4 *(n!)^4 /(2n+3)!) * Sum_{i=1..n+1} ((1/i)* binomial(2i, i)), see Sprugnoli Formula 5.2 as noted by Markus Scheuer.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(k!*(n-k)!)^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 05 2016 *)

Formula

a(n) = Sum_{i=0..n} (i! * (n-i)!)^2.
a(n) ~ 2*(n!)^2. - Vaclav Kotesovec, Dec 05 2016
a(n) = A001044(n)*A100516(n)/A100517(n). - Alois P. Heinz, Feb 21 2023

Extensions

Definition clarified by Georg Fischer, Feb 21 2023
Previous Showing 21-30 of 36 results. Next