cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 286 results. Next

A254136 Indices of pentagonal numbers (A000326) which are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 73, 889, 84049, 1025713, 96992281, 1183671721, 111929008033, 1365956140129, 129165978277609, 1576312202036953, 149057427003352561, 1819062915194503441, 172012141595890577593, 2099197027822254933769, 198501862344230723189569, 2422471551043966999065793
Offset: 1

Views

Author

Colin Barker, Jan 26 2015

Keywords

Comments

Also positive integers x in the solutions to 3*x^2 - 6*y^2 - x + 6*y - 2 = 0, the corresponding values of y being A254137.

Examples

			73 is in the sequence because the 73rd pentagonal number is 7957, which is also the 52nd centered hexagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1154,-1154,-1,1},{1,73,889,84049,1025713},20] (* Harvey P. Dale, Mar 24 2024 *)
  • PARI
    Vec(-x*(x^4+72*x^3-338*x^2+72*x+1)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+1154*a(n-2)-1154*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+72*x^3-338*x^2+72*x+1) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)).

A254137 Indices of centered hexagonal numbers (A003215) which are also pentagonal numbers (A000326).

Original entry on oeis.org

1, 52, 629, 59432, 725289, 68583900, 836982301, 79145760592, 965876849489, 91334139138692, 1114621047327429, 105399517420289400, 1286271722739003001, 121630951768874828332, 1484356453419762135149, 140362012941764131605152, 1712946060974682764958369
Offset: 1

Views

Author

Colin Barker, Jan 26 2015

Keywords

Comments

Also positive integers y in the solutions to 3*x^2 - 6*y^2 - x + 6*y - 2 = 0, the corresponding values of x being A254136.

Examples

			52 is in the sequence because the 52nd centered hexagonal number is 7957, which is also the 73rd pentagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(x*(51*x^3+577*x^2-51*x-1)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+1154*a(n-2)-1154*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(51*x^3+577*x^2-51*x-1) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)).

A254138 Pentagonal numbers (A000326) which are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 7957, 1185037, 10596309577, 1578130224697, 14111253811878301, 2101618114050816901, 18792154258821103289617, 2798754265133491448134897, 25025774916617575492416996517, 3727140237435880812247465267837, 33327174817289665775049786996211801
Offset: 1

Views

Author

Colin Barker, Jan 26 2015

Keywords

Examples

			7957 is in the sequence because it is the 73rd pentagonal number and the 52nd centered hexagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1331714,-1331714,-1,1},{1,7957,1185037,10596309577,1578130224697},20] (* Harvey P. Dale, Sep 26 2023 *)
  • PARI
    Vec(-x*(x^4+7956*x^3-154634*x^2+7956*x+1)/((x-1)*(x^2-1154*x+1)*(x^2+1154*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+1331714*a(n-2)-1331714*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+7956*x^3-154634*x^2+7956*x+1) / ((x-1)*(x^2-1154*x+1)*(x^2+1154*x+1)).

A254782 Indices of centered hexagonal numbers (A003215) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 11, 231, 5061, 111101, 2439151, 53550211, 1175665481, 25811090361, 566668322451, 12440892003551, 273132955755661, 5996484134620981, 131649518005905911, 2890292911995309051, 63454794545890893201, 1393115187097604341361, 30585079321601404616731
Offset: 1

Views

Author

Colin Barker, Feb 07 2015

Keywords

Comments

Also positive integers y in the solutions to 5*x^2 - 6*y^2 - 5*x + 6*y = 0, the corresponding values of x being A133285.
The numbers (as opposed to the indices) are A133141.

Examples

			11 is in the sequence because the 11th centered hexagonal number is 331, which is also the 12th centered pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{23,-23,1},{1,11,231},20] (* Harvey P. Dale, Mar 01 2022 *)
  • PARI
    Vec(-x*(x^2-12*x+1)/((x-1)*(x^2-22*x+1)) + O(x^100))

Formula

a(n) = 23*a(n-1)-23*a(n-2)+a(n-3).
G.f.: -x*(x^2-12*x+1) / ((x-1)*(x^2-22*x+1)).
a(n) = 1/2+1/24*(11+2*sqrt(30))^(-n)*(6+sqrt(30)-(-6+sqrt(30))*(11+2*sqrt(30))^(2*n)). - Colin Barker, Mar 03 2016

A254964 Indices of heptagonal numbers (A000566) that are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 2, 14, 37, 301, 806, 6602, 17689, 144937, 388346, 3182006, 8525917, 69859189, 187181822, 1533720146, 4109474161, 33671984017, 90221249714, 739249928222, 1980758019541, 16229826436861, 43486455180182, 356316931682714, 954721255944457, 7822742670582841
Offset: 1

Views

Author

Colin Barker, Feb 11 2015

Keywords

Comments

Also positive integers x in the solutions to 5*x^2 - 6*y^2 - 3*x + 6*y - 2 = 0, the corresponding values of y being A254965.

Examples

			14 is in the sequence because the 14th heptagonal number is 469, which is also the 13th centered hexagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,22,-22,-1,1},{1,2,14,37,301},30] (* Harvey P. Dale, Apr 13 2018 *)
  • PARI
    Vec(-x*(x^2-3*x+1)*(x^2+4*x+1)/((x-1)*(x^4-22*x^2+1)) + O(x^100))

Formula

a(n) = a(n-1)+22*a(n-2)-22*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^2-3*x+1)*(x^2+4*x+1) / ((x-1)*(x^4-22*x^2+1)).

A254965 Indices of centered hexagonal numbers (A003215) that are also heptagonal numbers (A000566).

Original entry on oeis.org

1, 2, 13, 34, 275, 736, 6027, 16148, 132309, 354510, 2904761, 7783062, 63772423, 170872844, 1400088535, 3751419496, 30738175337, 82360356058, 674839768869, 1808176413770, 14815736739771, 39697520746872, 325271368506083, 871537280017404, 7141154370394045
Offset: 1

Views

Author

Colin Barker, Feb 11 2015

Keywords

Comments

Also positive integers y in the solutions to 5*x^2 - 6*y^2 - 3*x + 6*y - 2 = 0, the corresponding values of x being A254964.

Examples

			13 is in the sequence because the 13th centered hexagonal number is 469, which is also the 14th heptagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(x*(x^3+11*x^2-x-1)/((x-1)*(x^4-22*x^2+1)) + O(x^100))

Formula

a(n) = a(n-1)+22*a(n-2)-22*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(x^3+11*x^2-x-1) / ((x-1)*(x^4-22*x^2+1)).

A254966 Heptagonal numbers (A000566) that are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 7, 469, 3367, 226051, 1622881, 108956107, 782225269, 52516617517, 377030956771, 25312900687081, 181728138938347, 12200765614555519, 87592585937326477, 5880743713315073071, 42219444693652423561, 2834506269052250664697, 20349684749754530829919
Offset: 1

Views

Author

Colin Barker, Feb 11 2015

Keywords

Examples

			469 is in the sequence because it is the 14th heptagonal number and the 13th centered hexagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,482,-482,-1,1},{1,7,469,3367,226051},20] (* Harvey P. Dale, May 17 2019 *)
  • PARI
    Vec(-x*(x^4+6*x^3-20*x^2+6*x+1)/((x-1)*(x^2-22*x+1)*(x^2+22*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+482*a(n-2)-482*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+6*x^3-20*x^2+6*x+1) / ((x-1)*(x^2-22*x+1)*(x^2+22*x+1)).

A322802 Number of compositions (ordered partitions) of n into centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 36, 45, 56, 70, 88, 111, 140, 178, 226, 286, 361, 455, 573, 721, 909, 1148, 1451, 1834, 2318, 2928, 3695, 4661, 5880, 7420, 9366, 11826, 14935, 18860, 23812, 30059, 37941, 47888, 60445, 76302, 96327
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 26 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<0, 0, (t->
          `if`(3*t*(t+1)+1>n, t-1, t))(1+h(n-1)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-(3*i*(i+1)+1)), i=0..h(n)))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - Sum[x^(3 k (k + 1) + 1), {k, 0, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=0} x^(3*k*(k+1)+1)).

A107118 Numbers that are both centered triangular numbers (A005448) and centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 19, 631, 21421, 727669, 24719311, 839728891, 28526062969, 969046412041, 32919051946411, 1118278719765919, 37988557420094821, 1290492673563457981, 43838762343737476519, 1489227427013510743651, 50589893756115627807601, 1718567160280917834714769
Offset: 1

Views

Author

Richard Choulet, Sep 18 2007

Keywords

Comments

The centered hexagonal numbers are given by 3*p^2 - 3*p + 1 while the centered triangular numbers are given by (3*r^2 + 3*r + 2)/2. A natural number is both of the above numbers if and only if there exist numbers p and r such that 2*(2p-1)^2 = (2*r+1)^2+1. The Diophantine equation X^2 = 2*Y^2 - 1 has the following solutions: X is given by 1, 7, 41, 239, ..., i.e., A002315, and Y is given by A001653. The first equation gives r with 0, 3, 20, 119, 6906, i.e., A001652, and p with 1, 3, 15, 85, 493, ..., i.e., A011900.

Crossrefs

Cf. A003215 (Centered hexagonal numbers), A005448 (Centered triangular numbers).

Programs

  • Mathematica
    a[n_] := 17*n - 7 + Sqrt[288*n^2 - 252*n + 45]; NestList[a, 1, 20] (* Stefan Steinerberger, Sep 18 2007 *)
    LinearRecurrence[{35,-35,1},{1,19,631},30] (* Harvey P. Dale, Jan 16 2016 *)
  • PARI
    Vec(-x*(x^2-16*x+1)/((x-1)*(x^2-34*x+1)) + O(x^100)) \\ Colin Barker, Jan 02 2015

Formula

a(n+2) = 34*a(n+1) - a(n) - 14.
a(n+1) = 17*a(n) - 7 + sqrt(288*a(n)^2 - 252*a(n) + 45).
G.f.: h(z)=(z*(1-16*z+z^2))/((1-z)*(1-34*z+z^2)).
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3). - Colin Barker, Jan 02 2015
a(n) = (14+(9+6*sqrt(2))*(17+12*sqrt(2))^(-n)+(9-6*sqrt(2))*(17+12*sqrt(2))^n)/32. - Colin Barker, Mar 02 2016

Extensions

More terms from Stefan Steinerberger, Sep 18 2007

A298125 The hex numbers (A003215) together with 3.

Original entry on oeis.org

1, 3, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387, 1519, 1657, 1801, 1951, 2107, 2269, 2437, 2611, 2791, 2977, 3169, 3367, 3571, 3781, 3997, 4219, 4447, 4681, 4921, 5167, 5419, 5677, 5941, 6211, 6487
Offset: 1

Views

Author

Brian Watson, Jan 13 2018

Keywords

Comments

Apart from the term 3, these are precisely the sizes of hexagonal clusters of circles in the A_2 (or hexagonal) lattice.
These numbers include many common numbers of strands used in cables.

Crossrefs

Cf. A003215.

Programs

  • PARI
    Vec(x*(1 + x^2 + 6*x^3 - 2*x^4) / (1 - x)^3 + O(x^60)) \\ Colin Barker, Feb 05 2018

Formula

From Colin Barker, Feb 05 2018: (Start)
G.f.: x*(1 + x^2 + 6*x^3 - 2*x^4) / (1 - x)^3.
a(n) = 7 - 9*n + 3*n^2 for n>2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>5.
(End)

Extensions

Entry revised by N. J. A. Sloane, Jan 22 2018
Previous Showing 11-20 of 286 results. Next