cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A098713 a(n) = (2n+1)*2^(2n+1) - 1.

Original entry on oeis.org

1, 23, 159, 895, 4607, 22527, 106495, 491519, 2228223, 9961471, 44040191, 192937983, 838860799, 3623878655, 15569256447, 66571993087, 283467841535, 1202590842879, 5085241278463, 21440476741631, 90159953477631, 378231999954943, 1583296743997439, 6614661952700415, 27584547717644287, 114841790497947647
Offset: 0

Views

Author

Parthasarathy Nambi, Sep 28 2004

Keywords

Crossrefs

Cf. A003261.

Programs

Extensions

More terms from Sam Alexander, Jan 06 2005

A242115 Woodall semiprimes: Semiprimes of the form n*2^n - 1.

Original entry on oeis.org

159, 895, 2047, 4607, 10239, 49151, 4718591, 20971519, 838860799, 137438953471, 5085241278463, 21440476741631, 340010386766614455386111, 96714065569170333976494079, 3288278229351791355200798719, 111414603535684224740921180159, 15370263527767281493147526365183
Offset: 1

Views

Author

K. D. Bajpai, May 04 2014

Keywords

Comments

The n-th Woodall number is Wn = n*2^n - 1.
If Wn is semiprime, it is in the sequence.

Examples

			a(1) = 159 = (5*2^5 - 1) is 5th Woodall number and 159 = 3*53 which is semiprime.
a(2) = 895 = (7*2^7 - 1) is 7th Woodall number and 895 = 5*179 which is semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A242115:= proc(); if bigomega(x*2^x-1)=2 then RETURN (x*2^x-1); fi; end: seq(A242115 (),x=1..200);
  • Mathematica
    Select[Table[n*2^n-1,{n,100}],PrimeOmega[#]==2&] (* Harvey P. Dale, Jan 03 2019 *)
  • PARI
    for(n=1, 1000, if(bigomega(n*2^n-1)==2, print1(n*2^n-1, ", "))) \\ Colin Barker, May 07 2014

Formula

a(n) = A003261(A242273(n)). - Amiram Eldar, Nov 27 2019

A242116 Cullen semiprimes: Semiprimes of the form k*2^k + 1.

Original entry on oeis.org

9, 25, 65, 161, 2049, 4609, 22529, 1048577, 44040193, 283467841537, 1202590842881, 256065421246102339102334047485953, 4259306016766850789028922770063361, 356615920533143509709616588588493085605889, 57729314674570665269045550892293179276409335447553
Offset: 1

Views

Author

K. D. Bajpai, May 04 2014

Keywords

Comments

The k-th Cullen number Cullen(k) = k*2^k + 1.
If Cullen(k) is semiprime, it is in the sequence.
The next term, a(16), has 52 digits.

Examples

			a(4) = 161 = (5*2^5+1) is 5th Cullen number and 161 = 7 * 23 is semiprime.
a(5) = 2049 = (8*2^8+1) is 8th Cullen number and 2049 = 3 * 683 is semiprime.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [s: n in [1..200] | IsSemiprime(s) where s is n*2^n+1]; // // Vincenzo Librandi, May 07 2014
  • Maple
    with(numtheory): A242116:= proc(); if bigomega(x*2^x+1) = 2 then RETURN (x*2^x+1);  fi; end: seq(A242116 (), x=1..200);
  • Mathematica
    cullen[n_] := n * 2^n + 1; Select[cullen[Range[35]], PrimeOmega[#] == 2 &] (* Amiram Eldar, Nov 27 2019 *)
  • PARI
    select(n->bigomega(n)==2, vector(90,n,n<Charles R Greathouse IV, May 06 2014
    

Formula

a(n) = A002064(A242175(n)). - Amiram Eldar, Nov 27 2019

A373100 Last digit of n*2^n - 1.

Original entry on oeis.org

1, 7, 3, 3, 9, 3, 5, 7, 7, 9, 7, 1, 5, 5, 9, 5, 3, 1, 1, 9, 1, 7, 3, 3, 9, 3, 5, 7, 7, 9, 7, 1, 5, 5, 9, 5, 3, 1, 1, 9, 1, 7, 3, 3, 9, 3, 5, 7, 7, 9, 7, 1, 5, 5, 9, 5, 3, 1, 1, 9, 1, 7
Offset: 1

Author

Keywords

Comments

This is a cyclic sequence of 20 numbers, using only 1,3,5,7 and 9 (4 times each).

References

  • Richard K. Guy (2004), Unsolved Problems in Number Theory (3rd ed.), New York: Springer Verlag, pp. section B20, ISBN 0-387-20860-7.

Crossrefs

Programs

  • Maple
    lastDigit := proc(n)
        return (n * 2^n - 1) mod 10;
    end proc:
    # Example usage
    minN := 1; maxN := 10;
    lastDigits := [seq(lastDigit(n), n = minN .. maxN)];
    print(lastDigits);
  • Mathematica
    lastDigit[n_] := Mod[n * 2^n - 1, 10]
    (* Example usage *)
    minN = 1; maxN = 10;
    lastDigits = Table[lastDigit[n], {n, minN, maxN}]
    Print[lastDigits]
  • PARI
    a(n) = lift(Mod(n*2^n - 1, 10))
  • Python
    def last_digit(n):
        return (n * 2**n - 1) % 10
    # Example usage
    min_n, max_n = 1, 10
    last_digits = [last_digit(n) for n in range(min_n, max_n + 1)]
    print(last_digits)
    

Formula

a(n) = A010879(A003261(n)).
From Chai Wah Wu, Jul 06 2024: (Start)
a(n) = a(n-2) - a(n-4) + a(n-5) + a(n-6) - a(n-7) - a(n-8) + a(n-9) - a(n-11) + a(n-13) for n > 13.
G.f.: x*(-9*x^12 - x^11 + 8*x^10 - 2*x^9 - 13*x^8 + 2*x^7 + 9*x^6 - 6*x^5 - 7*x^4 + 4*x^3 - 2*x^2 - 7*x - 1)/((x - 1)*(x^4 + x^3 + x^2 + x + 1)*(x^8 - x^6 + x^4 - x^2 + 1)). (End)

A131838 Multiplicative persistence of Woodall numbers.

Original entry on oeis.org

0, 0, 1, 2, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 5, 2, 2, 1, 1, 8, 3, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Author

Keywords

Comments

After the 111th term, all the numbers have some digits equal to zero, thus the persistence is equal to 1.

Examples

			Woodall number 159 --> 1*5*9=45 --> 4*5=20 --> 2*0=0 thus persistence is 3.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,k,w,ok,cont; for i from 1 by 1 to n do w:=1; k:=i*2^i-1; ok:=1; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(120);
  • Mathematica
    Table[wn=n*2^n-1;Length[NestWhileList[Times@@IntegerDigits[#]&, wn, #>=10&]], {n,  105}]-1  (* James C. McMahon, Mar 01 2025 *)

Formula

a(n) = A031346(A003261(n)). - Michel Marcus, Mar 01 2025

A131841 Additive persistence of Woodall numbers.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 3
Offset: 1

Author

Keywords

Examples

			Woodall number 159 --> 1+5+9=15 --> 1+5=6 thus persistence is 2
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat): P:=proc(n) local a,t;t:=0; a:=n*2^n-1; while a>9 do t:=t+1; a:=convert(convert(a,base,10),`+`); od; t;
    end: seq(P(i),i=1..10^2);
  • Mathematica
    f[n_] := Length@ NestWhileList[Plus @@ IntegerDigits@# &, n*2^n - 1, UnsameQ@## &, All] - 2; Array[f, 88] (* James C. McMahon, Mar 01 2025 *)

Formula

a(n) = A031286(A003261(n)). - James C. McMahon, Mar 01 2025

Extensions

Corrected entries and Maple code by Paolo P. Lava, Dec 19 2017

A229018 Primes of the form (3*x + 2)*2^x - 1.

Original entry on oeis.org

31, 223, 1279, 3276799, 14680063, 420906795007, 2357352929951743, 32326824857489154029020587706017980088319, 173918694842377447266238495093237679339055972614143
Offset: 1

Author

K. D. Bajpai, Sep 11 2013

Keywords

Comments

Also primes of the form W(n) + W(n+1) + 1 where W(n) and W(n+1) are consecutive Woodall numbers. The n-th Woodall number = n*2^n-1.

Examples

			a(2) = 223:   for x=4: R= x*2^x-1 = 4*2^4-1 = 63 and S=  (x+1)*2^(x+1)-1 = 5*2^5-1 = 159. R+S+1 = 63+159+1 = 223 which is prime.
		

Crossrefs

Programs

  • Maple
    KD:= proc() local a,b,d;  a:= x*2^x-1;  b:=(x+1)*2^(x+1)-1;  d:=a+b+1;  if isprime(d) then   RETURN(d): fi; end: seq(KD(),x=1..1000);
  • Mathematica
    Select[Table[(3*x + 2)*2^x - 1, {x, 200}], PrimeQ] (* T. D. Noe, Sep 20 2013 *)

A382646 Numbers k such that (k*2^d - 1)*(d*2^k - 1) is semiprime for some divisor d of k.

Original entry on oeis.org

2, 3, 6, 7, 12, 18, 19, 21, 30, 31, 42, 60, 75, 81, 115, 123, 126, 132, 133, 225, 249, 306, 324, 362, 384, 462, 468, 512, 606, 607, 612, 751, 822, 1279, 2170, 2202, 2281, 5312, 7755, 9531, 12379, 14898, 15822, 18123, 18819, 18885, 22971, 23005, 23208, 41628, 44497, 51384, 52540, 98726
Offset: 1

Author

Juri-Stepan Gerasimov, Apr 01 2025

Keywords

Comments

No further terms <= 10^5. - Michael S. Branicky, Apr 07 2025

Examples

			7 is in this sequence because (7*2^1-1)*(1*2^7-1) = 13*127 is semiprime for divisor 1 of 7.
		

Crossrefs

Supersequence of A002234.

Programs

  • Magma
    [n: n in [1..1000] | not #[d: d in Divisors(n) | IsPrime(d*2^n-1) and IsPrime(n*2^d-1)] eq 0];
    
  • PARI
    isok(k) = fordiv(k, d, if (ispseudoprime(k*2^d - 1) && ispseudoprime(d*2^k - 1), return(1))); \\ Michel Marcus, Apr 02 2025
    
  • Python
    from itertools import count, islice
    from sympy import isprime, divisors
    def A382646_gen(): # generator of terms
        yield from filter(lambda k:any(isprime((k<A382646_list = list(islice(A382646_gen(), 30)) # Chai Wah Wu, Apr 15 2025

Extensions

a(40) from Michel Marcus, Apr 02 2025
a(41)-a(54) from Michael S. Branicky, Apr 07 2025

A056235 n*2^(n*2^n+n)-1.

Original entry on oeis.org

7, 2047, 402653183, 1180591620717411303423, 233840261972944466912589573234605283144949206876159
Offset: 1

Author

Henry Bottomley, Aug 06 2000

Keywords

Comments

For n>2, a(n) is base at which zero is reached for the function "write f(j) in base j, read as base j+1 and then subtract 1 to give f(j+1)" starting from f(n)=2n^2-1.

Examples

			a(3)=3*2^(3*2^3+3)-1=3*2^27-1=402653184-1=402653183
		

Formula

a(n) =A003261(A036289(n)) =A036289(n)*A001146(n)^n-1

A099051 p*2^p - 1 where p is prime.

Original entry on oeis.org

7, 23, 159, 895, 22527, 106495, 2228223, 9961471, 192937983, 15569256447, 66571993087, 5085241278463, 90159953477631, 378231999954943, 6614661952700415, 477381560501272575, 34011184385901985791
Offset: 1

Author

Parthasarathy Nambi, Nov 13 2004

Keywords

Comments

This is the subset of Woodall numbers of prime index. The 9th largest known Woodall prime is in this sequence: 12379*2^12379-1, where 12379 is prime, as found by Wilfrid Keller in 1984. Smaller primes are when p = 2, 3, 751. These numbers can also be semiprime, as when p = 159, 163, or 211 and hard to factor as when n = 349 (108 digits). - Jonathan Vos Post, Nov 19 2004

Examples

			If p=3, 3*2^3 - 1 = 23.
If p=11, 11*2^11 - 1 = 22527.
		

References

  • Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 360-361, 1996

Crossrefs

Similar to Woodall numbers (A003261). Cf. A002234.

Programs

  • Mathematica
    Table[ Prime[n]*2^Prime[n] - 1, {n, 17}] (* Robert G. Wilson v, Nov 16 2004 *)

Extensions

More terms from Robert G. Wilson v, Nov 15 2004
Previous Showing 31-40 of 43 results. Next