cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 140 results. Next

A086119 Numbers of the form p^3 + q^3, p, q primes.

Original entry on oeis.org

16, 35, 54, 133, 152, 250, 351, 370, 468, 686, 1339, 1358, 1456, 1674, 2205, 2224, 2322, 2540, 2662, 3528, 4394, 4921, 4940, 5038, 5256, 6244, 6867, 6886, 6984, 7110, 7202, 8190, 9056, 9826, 11772, 12175, 12194, 12292, 12510, 13498, 13718, 14364
Offset: 1

Views

Author

Hollie L. Buchanan II, Jul 11 2003

Keywords

Examples

			133 belongs to the sequence because it can be written as 2^3 + 5^3.
		

Crossrefs

Programs

  • Mathematica
    sumList[x_List, y_List] := Module[{t = {}}, Do[t = Union[t, x[[i]] + y], {i, Length[x]}];  t]; nn = 10; Select[sumList[Prime[Range[nn]]^3, Prime[Range[nn]]^3], # < Prime[nn]^3 &]

Extensions

More terms from Alexander Adamchuk, Nov 10 2006

A045980 Numbers of the form x^3 + y^3 or x^3 - y^3.

Original entry on oeis.org

0, 1, 2, 7, 8, 9, 16, 19, 26, 27, 28, 35, 37, 54, 56, 61, 63, 64, 65, 72, 91, 98, 117, 124, 125, 126, 127, 128, 133, 152, 169, 189, 208, 215, 216, 217, 218, 224, 243, 250, 271, 279, 280, 296, 316, 331, 335, 341, 342, 343, 344, 351, 370, 386, 387, 397, 407, 432
Offset: 1

Views

Author

Keywords

Comments

Sums of two integer cubes. - Charles R Greathouse IV, Mar 30 2022

Examples

			7 = (2)^3 + (-1)^3.
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 86.

Crossrefs

A004999 and A003325 are subsequences.

Programs

  • Haskell
    a045980 n = a045980_list !! (n-1)
    a045980_list = 0 : filter f [1..] where
       f x = g $ takeWhile ((<= 4 * x) . (^ 3)) $ a027750_row x where
         g [] = False
         g (d:ds) = r == 0 && a010052 (d ^ 2 - 4 * y) == 1 || g ds
           where (y, r) = divMod (d ^ 2 - div x d) 3
    -- Reinhard Zumkeller, Dec 20 2013
  • Mathematica
    Union[Select[Sort[Flatten[Table[{j^3-i^3, j^3+i^3}, {i, 0, 20}, {j, i, 20}]]], #<20^3-19^3&]]
    With[{nn=20},Take[Union[Select[Flatten[{Total[#],#[[1]]-#[[2]]}&/@(Tuples[ Range[0,nn],2]^3)],#>-1&]],3*nn]] (* Harvey P. Dale, Jun 22 2014 *)
  • PARI
    is(n)=fordiv(n,d, my(L=(d^2-n/d)/3); if(denominator(L)==1 && issquare(d^2-4*L), return(1))); 0 \\ Charles R Greathouse IV, Jun 12 2012
    
  • PARI
    list(lim)={
        my(v=List(),x3,t);
        for(x=0,sqrtnint(lim\=1,3),
            x3=x^3;
            for(y=0,min(sqrtnint(lim-x3,3),x),
                listput(v,x3+y^3)
            )
        );
        for(x=2,t=sqrtint(lim\3),
            x3=x^3;
            for(y=sqrtnint(max(0,x3-lim-1),3)+1,x-1,
                listput(v,x3-y^3)
            )
        );
        t=(t+1)^3-t^3;
        if(t<=lim,listput(v,t));
        Set(v);
    } \\ Charles R Greathouse IV, Jun 12 2012, updated Jan 13 2022
    
  • PARI
    is(n)=#thue(thueinit(z^3+1),n) \\ Ralf Stephan, Oct 18 2013
    

A280618 Expansion of (Sum_{k>=1} x^(k^3))^2.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 06 2017

Keywords

Comments

Number of ways to write n as an ordered sum of two positive cubes.

Examples

			a(9) = 2 because we have [8, 1] and [1, 8].
		

Crossrefs

Cf. A000578, A001235 (positions of terms > 3), A003325 (of nonzero terms), A010057, A063725, A173677.

Programs

  • Mathematica
    nmax = 150; CoefficientList[Series[(Sum[x^(k^3), {k, 1, nmax}])^2, {x, 0, nmax}], x]
  • PARI
    A010057(n) = ispower(n, 3);
    A280618(n) = if(n<2, 0, sum(r=1,sqrtnint(n-1,3),A010057(n-(r^3)))); \\ Antti Karttunen, Nov 30 2021

Formula

G.f.: (Sum_{k>=1} x^(k^3))^2.

A266230 Least positive integer x such that n + x^2 = y^3 + z^3 for some positive integers y and z, or 0 if no such x exists.

Original entry on oeis.org

3, 1, 3703, 5, 43, 2, 119, 3, 1, 19, 5, 384, 2, 29, 29, 1, 7, 18, 6, 3, 13, 14, 869, 7, 2, 15, 3, 1, 10, 5, 23, 2, 20, 10, 1, 45, 6, 2373, 4, 1193, 5, 52, 7, 36, 54, 3, 18, 5, 13, 4, 2, 385, 9, 1, 14, 6, 3, 76, 250, 250, 34, 2, 8, 3, 1, 336, 5, 52, 2, 8, 28, 1, 21, 12, 13, 4, 113
Offset: 0

Views

Author

Zhi-Wei Sun, Dec 24 2015

Keywords

Comments

Conjecture: For any integer m, there are positive integers x, y and z such that m + x^2 = y^3 + z^3.
This is similar to the conjecture in A266152. We have verified it for all integers m with |m| <= 25000.
Obviously, a(k^3) = 1 for any positive integer k.
See also A266231 for a related sequence.

Examples

			a(0) = 3 since 0 + 3^2 = 1^3 + 2^3.
a(2) = 3703 since 2 + 3703^2 = 107^3 + 232^3.
a(3) = 5 since 3 + 5^2 = 1^3 + 3^3.
a(4) = 43 since 4 + 43^2 = 5^3 + 12^3.
a(37) = 2373 since 37 + 2373^2 = 93^3 + 169^3.
a(1227) = 132316 since 1227 + 132316^2 = 1874^3 + 2219^3.
		

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]
    Do[x=1;Label[bb];Do[If[CQ[n+x^2-y^3],Print[n," ",x];Goto[aa]],{y,1,((n+x^2)/2)^(1/3)}];x=x+1;Goto[bb];Label[aa];Continue,{n,0,80}]

A266231 Least positive integer x such that x^2 - n = y^3 + z^3 for some positive integers y and z, or 0 if no such x exists.

Original entry on oeis.org

6, 2, 61, 47, 3283, 16, 3, 6, 5, 8, 12, 686, 16, 4, 302, 5, 13, 12, 152, 6, 7, 83, 5, 148, 33, 37, 6, 10, 8, 11, 34, 16, 7, 6, 10, 8, 24, 53, 16, 7, 13, 52, 13, 14, 30, 9, 7, 8, 11, 67, 74, 22, 9, 28, 8, 11, 43, 115, 20, 122, 23, 8, 14, 48, 9, 25, 11, 14, 392, 14
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 24 2015

Keywords

Comments

The conjecture in A266230 implies that a(n) > 0 for all n > 0.

Examples

			 a(1) = 6 since 6^2 - 1 = 2^3 + 3^3.
a(3) = 61 since 61^2 - 3 = 7^3 + 15^3.
a(4) = 47 since 47^2 - 4 = 2^3 + 13^3.
a(5) = 3283 since 3283^2 - 5 = 65^3 + 219^3.
a(166) = 6554 since 6554^2 - 166 = 175^3 + 335^3.
a(635) = 44779 since 44779^2 - 635 = 25^3 + 1261^3.
		

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]
    Do[x=Floor[Sqrt[n]]+1;Label[bb];Do[If[CQ[-n+x^2-y^3],Print[n," ",x];Goto[aa]],{y,1,((-n+x^2)/2)^(1/3)}];x=x+1;Goto[bb];Label[aa];Continue,{n,1,70}]

A025455 a(n) is the number of partitions of n into 2 positive cubes.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

In other words, number of solutions to the equation x^3 + y^3 = n with x >= y > 0. - Antti Karttunen, Aug 28 2017
The first term > 1 is a(1729) = 2. - Michel Marcus, Apr 23 2019

Crossrefs

Cf. A025456, A025468, A003108, A003325, A000578, A048766, A001235 (two or more ways, positions where a(n) > 1).
Cf. also A025426, A216284.

Programs

Formula

If a(n) > 0 then A025456(n + k^3) > 0 for k>0; a(A113958(n)) > 0; a(A003325(n)) > 0. - Reinhard Zumkeller, Jun 03 2006
a(n) >= A025468(n). - Antti Karttunen, Aug 28 2017
a(n) = [x^n y^2] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019

Extensions

Secondary offset added by Antti Karttunen, Aug 28 2017
Secondary offset corrected by Michel Marcus, Apr 23 2019

A181375 Total number of positive integers below 10^n requiring 2 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

2, 9, 41, 202, 938, 4354, 20330, 94625, 439959, 2045048, 9500746, 44124084, 204883131, 951202028, 4415710979, 20497646229, 95146359635
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A061439(n) + a(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).

Crossrefs

Cf. A003325.

Programs

  • Maple
    iscube:=proc(n) if root(n,3)=trunc(root(n,3)) then true; else false; fi; end:
    isA003325:=proc(n) local x,y3; if iscube(n) then false; else for x from 1 do y3:=n-x^3; if y3A003325(k) then i:=i+1; fi; od: return(i); end:
    for n from 1 do print(a(n)); od;
  • PARI
    a(n)=my(N=10^n,v=List(),x3);sum(x=1,sqrtnint(N-1,3),x3=x^3;sum(y=1, min(sqrtnint(N-x3,3),x), !ispower(x3+y^3,3) && listput(v,x3+y^3))); #vecsort(v,,8) \\ Charles R Greathouse IV, Oct 16 2013

Extensions

a(6)-a(12) from Lars Blomberg, May 04 2011
a(13)-a(17) from Hiroaki Yamanouchi, Jul 12 2014

A226903 Shiraishi numbers: a parametrized family of solutions c to the Diophantine equation a^3 + b^3 + c^3 = d^3 with d = c+1.

Original entry on oeis.org

5, 18, 53, 102, 197, 306, 491, 684, 989, 1290, 1745, 2178, 2813, 3402, 4247, 5016, 6101, 7074, 8429, 9630, 11285, 12738, 14723, 16452, 18797, 20826, 23561, 25914, 29069, 31770, 35375, 38448, 42533, 46002, 50597, 54486, 59621, 63954, 69659, 74460, 80765, 86058
Offset: 1

Views

Author

Jonathan Sondow, Jun 22 2013

Keywords

Comments

Shiraishi's solutions to a^3 + b^3 + c^3 = d^3 are a = 3n^2; b = 6n^2 - 3n + 1 or 6n^2 + 3n + 1; c = 9n^3 - 6n^2 + 3n - 1 or 9n^3 + 6n^2 + 3n, respectively, for n > 0; and d = c+1. See Smith and Mikami for a derivation.
Shiraishi's formulas show that the sequence is infinite. Hence the sequences A023042 (solutions to x^3 + y^3 + z^3 = w^3), A225908 (solutions to a^3 + b^3 = c^3 - d^3), A225909 (solutions to a^3 + b^3 = (c+1)^3 - c^3) and A226902 (numbers c in A225909) are also infinite.
Shiraishi's solution b = 6n^2 +/- 3n + 1 is the centered triangular numbers A005448 except 1.

Examples

			The first two terms are a(1) = 9 - 6 + 3 - 1 = 5 and a(2) = 9 + 6 + 3 = 18. Then Shiraishi's formulas give 3^3 + 4^3 + 5^3 = 6^3 and 3^3 + 10^3 + 18^3 = 19^3.
		

References

  • Shiraishi Chochu (aka Shiraishi Nagatada), Shamei Sampu (Sacred Mathematics), 1826.

Crossrefs

Formula

a(2n-1) = 9n^3 - 6n^2 + 3n - 1.
a(2n) = 9n^3 + 6n^2 + 3n.
G.f.: x*(5 + 13*x + 20*x^2 + 10*x^3 + 5*x^4 + x^5) / ((1 + x)^3*(1 - x)^4). [Bruno Berselli, Jun 22 2013]
a(n) = (18*n^3 + 27*n^2 + 27*n + 1 - (3*n^2 + 3*n + 1)*(-1)^n)/16. [Bruno Berselli, Jun 22 2013]
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7. - Chai Wah Wu, Aug 05 2025

A181376 Total number of n-digit numbers requiring 2 positive cubes in their representation as a sum of cubes.

Original entry on oeis.org

2, 7, 32, 161, 736, 3416, 15976, 74295, 345334, 1605089, 7455698, 34623338, 160759047, 746318897, 3464508951, 16081935250, 74648713406
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + a(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n).

Examples

			a(1) = 2 from 1+1=2, 1+8=9.
a(2) = 7 from 8+8=16, 1+27=28, 35, 54, 65, 72, 91.
		

Crossrefs

Cf. A003325.

Programs

  • Mathematica
    Table[Length[c = Table[j^3, {j, (10^n - 1)^(1/3)}];
      Select[Union[Flatten[Outer[Plus, c, c]]],
    IntervalMemberQ[Interval[{10^(n - 1), 10^n - 1}], #] &]], {n, 10}] (* Robert Price, Apr 18 2019 *)
  • PARI
    a(n)=my(N=10^n, Nn=N/10, v=List(), x3, t); sum(x=sqrtnint(Nn\2,3), sqrtnint(N-1, 3), x3=x^3; sum(y=1, min(sqrtnint(N-x3, 3), x), t=x3+y^3; t>=Nn && !ispower(t, 3) && listput(v, t))); #vecsort(v, , 8) \\ Charles R Greathouse IV, Oct 16 2013

Formula

a(n) = A181375(n)-A181375(n-1).

Extensions

a(6)-a(11) from Charles R Greathouse IV, Oct 16 2013
a(12) from Lars Blomberg, Jan 15 2014
a(13)-a(17) from Hiroaki Yamanouchi, Jul 13 2014

A101421 Numbers which are the sum of two positive cubes and divisible by 7.

Original entry on oeis.org

28, 35, 91, 126, 133, 189, 217, 224, 280, 539, 637, 686, 728, 756, 854, 945, 1001, 1008, 1064, 1358, 1456, 1512, 1547, 1729, 1736, 1792, 2198, 2205, 2240, 2261, 2331, 2457, 2709, 2926, 3059, 3087, 3402, 3500, 3528, 3591, 4123, 4221, 4312, 4375, 4914, 4921
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 17 2005

Keywords

Crossrefs

Cf. A003325.

Programs

  • Mathematica
    upto[n_] := Block[{t}, Union@ Reap[Do[If[Mod[t = x^3 + y^3, 7] == 0, Sow@t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3)]}]][[2, 1]]]; upto[5000] (* Giovanni Resta, Jun 12 2020 *)

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, May 08 2013
Previous Showing 61-70 of 140 results. Next