A168262 Intersection of A003418 and A116998.
1, 2, 6, 12, 60, 420, 840, 27720, 360360, 5354228880
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Distinct Prime Factors
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
b:= proc(n) b(n):= `if`(n=0, 1, ilcm(n, b(n-1))) end: a:= proc(n) a(n):= `if`(n<0, 0, a(n-1) +b(n)) end: seq(a(n), n=0..35); # Alois P. Heinz, Mar 31 2018
Table[If[n == 0, 1, LCM @@ Range[n]], {n, 0, 50}] // Accumulate (* Jean-François Alcover, Jan 03 2022 *)
a(n) = sum(k=0, n, lcm(vector(k, i, i))); \\ Michel Marcus, Mar 13 2018
(define (A173185 n) (if (< n 1) 1 (+ (A173185 (- n 1)) (A003418 n))))
v=List([0]);t=1;for(n=1,100,listput(v,round(log(t=lcm(t,n))))); Vec(v) \\ Charles R Greathouse IV, Sep 23 2012
For n=10, the LCM of all the numbers from 1 to 10 is 2520 = 100111011000_2, whose major index (2nd definition) is 14, so a(10)=14.
Map[Total@ SequencePosition[Reverse@ #, {1, 0}][[All, 1]] &@ IntegerDigits[#, 2] &, {1}~Join~Table[LCM @@ Range@ n, {n, 67}]] (* Michael De Vlieger, Dec 16 2016, Version 10.1 *)
a(2) = 1 since A003418(2) = 2, and 2^1|A003418(2). a(30) = 2 since A003418(30) = 2329089562800 = 30^2 * 2587877292, and 30^2|A003418(30).
a[1] = 1; a[n_] := IntegerExponent[LCM @@ Range[n], n]; Array[a, 100]
a(n) = if (n==1, 1, valuation(lcm([1..n]), n)); \\ Michel Marcus, Jul 17 2021
Table[LCM@@Range[n]-2^n,{n,30}] (* Harvey P. Dale, Sep 24 2022 *)
[(&+[(-1)^(n-k)*Binomial(n,k)*Lcm([1..k]): k in [0..n]]): n in [0..50]]; // G. C. Greubel, Apr 08 2023
A100443[n_]:= (-1)^n +Sum[(-1)^(n-k)*Binomial[n, k]*Apply[LCM, Range[1, k]], {k,n}]; Table[A100443[n], {n,0,50}] (* G. C. Greubel, Apr 08 2023 *)
def A100443(n): return sum((-1)^(n-k)*binomial(n,k)*lcm(range(1,k+1)) for k in range(n+1) ) [A100443(n) for n in range(61)] # G. C. Greubel, Apr 08 2023
a(6) = 2^A003418(6) = 2^60 = 1152921504606846976 [= (2^60)^1] = (2^30)^2 = 1073741824^2 = (2^20)^3 = 1048576^3 = (2^15)^4 = 32768^4 = (2^12)^5 = 4096^5 = (2^10)^6 = 1024^6, while no smaller integer > 1 can be expressed simultaneously as a square, cube, 4th, 5th, and 6th power of integers.
a(n)=2^(lcm(vector(n, i, i))) \\ Jianing Song, Jul 20 2021, following a PARI program for A003418
Comments