A218733
a(n) = (30^n - 1)/29.
Original entry on oeis.org
0, 1, 31, 931, 27931, 837931, 25137931, 754137931, 22624137931, 678724137931, 20361724137931, 610851724137931, 18325551724137931, 549766551724137931, 16492996551724137931, 494789896551724137931, 14843696896551724137931, 445310906896551724137931, 13359327206896551724137931
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 31*Self(n-1) - 30*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{31, -30}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(30^Range[0,20]-1)/29 (* Harvey P. Dale, Nov 22 2022 *)
-
A218733(n):=floor((30^n-1)/29)$ makelist(A218733(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
A218733(n)=30^n\29
A218740
a(n) = (37^n - 1)/36.
Original entry on oeis.org
0, 1, 38, 1407, 52060, 1926221, 71270178, 2636996587, 97568873720, 3610048327641, 133571788122718, 4942156160540567, 182859777940000980, 6765811783780036261, 250335035999861341658, 9262396331994869641347, 342708664283810176729840, 12680220578500976539004081
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 38*Self(n-1)-37*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{38, -37}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218740(n):=(37^n-1)/36$
makelist(A218740(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218740(n)=37^n\36
A218744
a(n) = (41^n - 1)/40.
Original entry on oeis.org
0, 1, 42, 1723, 70644, 2896405, 118752606, 4868856847, 199623130728, 8184548359849, 335566482753810, 13758225792906211, 564087257509154652, 23127577557875340733, 948230679872888970054, 38877457874788447772215, 1593975772866326358660816, 65353006687519380705093457
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 42*Self(n-1)-41*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{42, -41}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218744(n):=(41^n-1)/40$
makelist(A218744(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218744(n)=41^n\40
A218746
a(n) = (43^n - 1)/42.
Original entry on oeis.org
0, 1, 44, 1893, 81400, 3500201, 150508644, 6471871693, 278290482800, 11966490760401, 514559102697244, 22126041415981493, 951419780887204200, 40911050578149780601, 1759175174860440565844, 75644532518998944331293, 3252714898316954606245600, 139866740627629048068560801
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 44*Self(n-1) - 43*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{44, -43}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
Join[{0},Accumulate[43^Range[0,20]]] (* Harvey P. Dale, Jan 27 2015 *)
-
A218746(n):=(43^n-1)/42$
makelist(A218746(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218746(n)=43^n\42
A353144
Decimal repunits written in base 5.
Original entry on oeis.org
0, 1, 21, 421, 13421, 323421, 12023421, 241023421, 10321023421, 211421023421, 4233421023421, 140223421023421, 3310023421023421, 121201023421023421, 2424021023421023421, 104030421023421023421, 2131113421023421023421, 43122323421023421023421, 1413002023421023421023421
Offset: 0
A016234
Expansion of 1/((1-x) * (1-5*x) * (1-9*x)).
Original entry on oeis.org
1, 15, 166, 1650, 15631, 144585, 1320796, 11984820, 108351661, 977606355, 8810664226, 79357013190, 714518294491, 6432190529325, 57897344158456, 521114244398760, 4690218934452121, 42212924084385495, 379921085131051486, 3419313608037373530, 30773941681625912551
Offset: 0
-
CoefficientList[Series[1/((1-x)(1-5x)(1-9x)),{x,0,30}],x] (* or *) LinearRecurrence[{15,-59,45},{1,15,166},30] (* Harvey P. Dale, Oct 16 2014 *)
-
Vec(1/((1-x)*(1-5*x)*(1-9*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
-
a(n) = (9^(n+2) - 2*5^(n+2) + 1)/32; \\ Joerg Arndt, Aug 13 2013
A125833
Numbers whose base-5 representation is 333333.......3.
Original entry on oeis.org
0, 3, 18, 93, 468, 2343, 11718, 58593, 292968, 1464843, 7324218, 36621093, 183105468, 915527343, 4577636718, 22888183593, 114440917968, 572204589843, 2861022949218, 14305114746093, 71525573730468, 357627868652343
Offset: 0
Base 5.................decimal
0.........................0
3.........................3
33.......................18
333......................93
3333....................468
33333..................2343
333333................11718
3333333...............58593
33333333.............292968, etc.
-
List([0..30], n-> 3*(5^n -1)/4); G. C. Greubel, Aug 03 2019
-
[3*(5^n -1)/4: n in [0..30]]; // G. C. Greubel, Aug 03 2019
-
seq(3*(5^n-1)/4, n=0..30);
-
Table[FromDigits[PadRight[{},n,3],5],{n,0,30}] (* or *) LinearRecurrence[ {6,-5},{0,3},30] (* Harvey P. Dale, Sep 23 2016 *)
3*(5^Range[0,30] -1)/4 (* G. C. Greubel, Aug 03 2019 *)
-
vector(30, n, n--; 3*(5^n -1)/4) \\ G. C. Greubel, Aug 03 2019
-
[3*(5^n -1)/4 for n in (0..30)] # G. C. Greubel, Aug 03 2019
A157832
Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (5^(i-1)-x) in row n, column k, 0 <= k <= n.
Original entry on oeis.org
1, 1, -1, 5, -6, 1, 125, -155, 31, -1, 15625, -19500, 4030, -156, 1, 9765625, -12203125, 2538250, -101530, 781, -1, 30517578125, -38144531250, 7944234375, -319819500, 2542155, -3906, 1, 476837158203125, -596038818359375
Offset: 0
Triangle begins
1;
1, -1;
5, -6, 1;
125, -155, 31, -1;
15625, -19500, 4030, -156, 1;
9765625, -12203125, 2538250, -101530, 781, -1;
30517578125, -38144531250, 7944234375, -319819500, 2542155, -3906, 1;
476837158203125, -596038818359375, 124166806640625, -5005123921875, 40040991375, -63573405, 19531, -1;
-
A157832 := proc(n,k)
product( 5^(i-1)-x,i=1..n) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Oct 15 2013
-
p[x_, n_] = If[n == 0, 1, Product[q^(i - 1) - x, {i, 1, n}]];
q = 5;
Table[CoefficientList[p[x, n], x], {n, 0, 10}];
Flatten[%]
A218728
a(n) = (25^n - 1)/24.
Original entry on oeis.org
0, 1, 26, 651, 16276, 406901, 10172526, 254313151, 6357828776, 158945719401, 3973642985026, 99341074625651, 2483526865641276, 62088171641031901, 1552204291025797526, 38805107275644938151, 970127681891123453776, 24253192047278086344401, 606329801181952158610026
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 26*Self(n-1)-25*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{26, -25}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(25^Range[0,20]-1)/24 (* Harvey P. Dale, Aug 23 2020 *)
-
A218728(n):=(25^n-1)/24$
makelist(A218728(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218728(n)=25^n\24
A218743
a(n) = (40^n - 1)/39.
Original entry on oeis.org
0, 1, 41, 1641, 65641, 2625641, 105025641, 4201025641, 168041025641, 6721641025641, 268865641025641, 10754625641025641, 430185025641025641, 17207401025641025641, 688296041025641025641, 27531841641025641025641, 1101273665641025641025641, 44050946625641025641025641
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 41*Self(n-1) - 40*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{41, -40}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218743(n):=floor(40^n/39)$ makelist(A218743(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=40^n\39
Comments