cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 139 results. Next

A309326 BII-numbers of minimal covers.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 20, 32, 33, 36, 48, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 192, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288, 320, 512, 513, 516, 520, 521, 524, 528, 544, 545, 548
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. A minimal cover is a set-system where every edge contains at least one vertex that does not belong to any other edge.

Examples

			The sequence of all minimal covers together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    3: {{1},{2}}
    4: {{1,2}}
    8: {{3}}
    9: {{1},{3}}
   10: {{2},{3}}
   11: {{1},{2},{3}}
   12: {{1,2},{3}}
   16: {{1,3}}
   18: {{2},{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   33: {{1},{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  129: {{1},{4}}
		

Crossrefs

Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,1000],And@@Table[Union@@Delete[bpe/@bpe[#],i]!=Union@@bpe/@bpe[#],{i,Length[bpe/@bpe[#]]}]&]

A326961 Number of set-systems covering n vertices where every vertex is the unique common element of some subset of the edges, also called covering T_1 set-systems.

Original entry on oeis.org

1, 1, 2, 36, 19020, 2010231696, 9219217412568364176, 170141181796805105960861096082778425120, 57896044618658097536026644159052312977171804852352892309392604715987334365792
Offset: 0

Views

Author

Gus Wiseman, Aug 12 2019

Keywords

Comments

Same as A059523 except with a(1) = 1 instead of 2.
Alternatively, these are set-systems covering n vertices whose dual is a (strict) antichain. A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. An antichain is a set of sets, none of which is a subset of any other.

Examples

			The a(3) = 36 set-systems:
  {{1}{2}{3}}        {{12}{13}{23}{123}}     {{2}{3}{12}{13}{23}}
  {{12}{13}{23}}     {{1}{2}{3}{12}{13}}     {{2}{3}{12}{13}{123}}
  {{1}{2}{3}{12}}    {{1}{2}{3}{12}{23}}     {{2}{12}{13}{23}{123}}
  {{1}{2}{3}{13}}    {{1}{2}{3}{13}{23}}     {{3}{12}{13}{23}{123}}
  {{1}{2}{3}{23}}    {{1}{2}{12}{13}{23}}    {{1}{2}{3}{12}{13}{23}}
  {{1}{2}{13}{23}}   {{1}{2}{3}{12}{123}}    {{1}{2}{3}{12}{13}{123}}
  {{1}{2}{3}{123}}   {{1}{2}{3}{13}{123}}    {{1}{2}{3}{12}{23}{123}}
  {{1}{3}{12}{23}}   {{1}{2}{3}{23}{123}}    {{1}{2}{3}{13}{23}{123}}
  {{2}{3}{12}{13}}   {{1}{3}{12}{13}{23}}    {{1}{2}{12}{13}{23}{123}}
  {{1}{12}{13}{23}}  {{1}{2}{13}{23}{123}}   {{1}{3}{12}{13}{23}{123}}
  {{2}{12}{13}{23}}  {{1}{3}{12}{23}{123}}   {{2}{3}{12}{13}{23}{123}}
  {{3}{12}{13}{23}}  {{1}{12}{13}{23}{123}}  {{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

Covering set-systems are A003465.
Covering T_0 set-systems are A059201.
The version with empty edges allowed is A326960.
The non-covering version is A326965.
Covering set-systems whose dual is a weak antichain are A326970.
The unlabeled version is A326974.
The BII-numbers of T_1 set-systems are A326979.

Programs

  • Mathematica
    tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&tmQ[#]&]],{n,0,3}]

Formula

Inverse binomial transform of A326965.

A369194 Number of labeled loop-graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 1, 4, 23, 199, 2313, 34015, 606407, 12712643, 306407645, 8346154699, 253476928293, 8490863621050, 310937199521774, 12356288017546937, 529516578044589407, 24339848939829286381, 1194495870124420574751, 62332449791125883072149, 3446265450868329833016605
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Comments

Row-sums of left portion of A369199.

Examples

			The a(0) = 1 through a(3) = 23 loop-graphs (loops shown as singletons):
  {}  {{1}}  {{1,2}}      {{1},{2,3}}
             {{1},{2}}    {{2},{1,3}}
             {{1},{1,2}}  {{3},{1,2}}
             {{2},{1,2}}  {{1,2},{1,3}}
                          {{1,2},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1},{2},{1,3}}
                          {{1},{2},{2,3}}
                          {{1},{3},{1,2}}
                          {{1},{3},{2,3}}
                          {{2},{3},{1,2}}
                          {{2},{3},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1},{1,3},{2,3}}
                          {{2},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{2},{1,3},{2,3}}
                          {{3},{1,2},{1,3}}
                          {{3},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

The minimal case is A001862, without loops A053530.
This is the covering case of A066383 and A369196, cf. A369192 and A369193.
The case of equality is A368597, without loops A367863.
The version without loops is A369191.
The connected case is A369197, without loops A129271.
The unlabeled version is A370169, equality A368599, non-covering A368598.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts simple graphs; also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable graphs, covering A367869.
A322661 counts covering loop-graphs, unlabeled A322700.
A367867 counts non-choosable graphs, covering A367868.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]], Length[Union@@#]==n&&Length[#]<=n&]],{n,0,5}]

Formula

Inverse binomial transform of A369196.

A055154 Triangle read by rows: T(n,k) = number of k-covers of a labeled n-set, k=1..2^n-1.

Original entry on oeis.org

1, 1, 3, 1, 1, 12, 32, 35, 21, 7, 1, 1, 39, 321, 1225, 2919, 4977, 6431, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 1, 120, 2560, 24990, 155106, 711326, 2597410, 7856550, 20135050, 44337150, 84665490, 141118250, 206252550, 265182450, 300540190
Offset: 1

Views

Author

Vladeta Jovovic, Jun 14 2000

Keywords

Comments

Row sums give A003465.
From Manfred Boergens, Apr 11 2024: (Start)
If more than half of the nonempty subsets of [n] are drawn their union covers [n] (see Formula). - The proof is based on 2^(n-1)-1 being the number of nonempty subsets of [n] with one fixed element of [n] missing.
For covers which may include one empty set see A163353.
For disjoint covers see A008277.
For disjoint covers which may include one empty set see A256894 (amendment by Manfred Boergens, Mar 09 2025). (End)

Examples

			Triangle begins:
  [1],
  [1,3,1],
  [1,12,32,35,21,7,1],
  ...
There are 35 4-covers of a labeled 3-set.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 165.

Crossrefs

Cf. A369950 (partial row sums).
Cf. 256894.

Programs

  • Mathematica
    nn=5;Map[Select[#,#>0&]&,Transpose[Table[Table[Sum[(-1)^j Binomial[n,j] Binomial[2^(n-j)-1,m],{j,0,n}],{n,1,nn}],{m,1,2^nn-1}]]]//Grid (* Geoffrey Critzer, Jun 27 2013 *)

Formula

T(n,k) = Sum_{j=0..n} (-1)^j*C(n, j)*C(2^(n-j)-1, k), k=1..2^n-1.
From Vladeta Jovovic, May 30 2004: (Start)
T(n,k) = (1/k!)*Sum_{j=0..k} Stirling1(k+1, j+1)*(2^j-1)^n.
E.g.f.: Sum(exp(y*(2^n-1))*log(1+x)^n/n!, n=0..infinity)/(1+x). (End)
Also exp(-y)*Sum((1+x)^(2^n-1)*y^n/n!, n=0..infinity).
From Manfred Boergens, Apr 11 2024: (Start)
T(n,k) = C(2^n-1,k) for k>=2^(n-1).
T(n,k) < C(2^n-1,k) for k<2^(n-1).
(Note: C(2^n-1,k) is the number of all k-subsets of P([n])\{{}}.) (End)

A059523 Number of n-element unlabeled ordered T_0-antichains without isolated vertices; number of T_1-hypergraphs (without empty edge and without multiple edges) on n labeled vertices.

Original entry on oeis.org

1, 2, 2, 36, 19020, 2010231696, 9219217412568364176, 170141181796805105960861096082778425120, 57896044618658097536026644159052312977171804852352892309392604715987334365792
Offset: 0

Views

Author

Vladeta Jovovic and Goran Kilibarda, Jan 20 2001; revised Jun 03 2004

Keywords

Examples

			Number of k-element T_1-hipergraphs (without empty edge and without multiple edges) on 3 labeled vertices is
C(7,k)-6*C(5,k)+6*C(4,k)+3*C(3,k)-6*C(2,k)+2*C(1,k),k=0..7; so a(3)=2+11+15+7+1=36=2^7-6*2^5+6*2^4+3*2^3-6*2^2+2*2.
		

Crossrefs

Formula

a(n) = A059052(n)/2.

A327040 Number of set-systems covering n vertices, every two of which appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 4, 72, 25104, 2077196832, 9221293229809363008, 170141182628636920877978969957369949312
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts covering set-systems that are cointersecting, meaning their dual is pairwise intersecting.

Examples

			The a(0) = 1 through a(2) = 4 set-systems:
  {}  {{1}}  {{1,2}}
             {{1},{1,2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
		

Crossrefs

The unlabeled multiset partition version is A319752.
The BII-numbers of these set-systems are A326853.
The antichain case is A327020.
The pairwise intersecting case is A327037.
The non-covering version is A327039.
The case where the dual is strict is A327053.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]

Formula

Inverse binomial transform of A327039.

Extensions

a(5)-a(7) from Christian Sievers, Oct 22 2023

A368600 Number of ways to choose a set of n nonempty subsets of {1..n} such that it is not possible to choose a different element from each.

Original entry on oeis.org

0, 0, 0, 3, 164, 18625, 5491851, 4649088885, 12219849683346
Offset: 0

Views

Author

Gus Wiseman, Jan 01 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(3) = 3 set-systems:
  {{1},{2},{1,2}}
  {{1},{3},{1,3}}
  {{2},{3},{2,3}}
		

Crossrefs

For a unique choice we have A003024, any length A367904 (ranks A367908).
Sets of n nonempty subsets of {1..n} are counted by A136556.
For any length we have A367903, ranks A367907, no singletons A367769.
The complement is A368601, any length A367902 (see also A367770, A367906).
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,3}]
  • Python
    from itertools import combinations, product, chain
    from scipy.special import comb
    def v(c):
        for elements in product(*c):
            if len(set(elements)) == len(elements):
                return True
        return False
    def a(n):
        if n == 0:
            return 1
        subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in range(1, n + 1)))
        cs = combinations(subsets, n)
        c = sum(1 for c in cs if v(c))
        return c
    [print(int(comb(2**n-1,n) - a(n))) for n in range(7)] # Robert P. P. McKone, Jan 02 2024

Formula

a(n) = A136556(n) - A368601(n).

Extensions

a(6) from Robert P. P. McKone, Jan 02 2024
a(7)-a(8) from Christian Sievers, Jul 25 2024

A368601 Number of ways to choose a set of n nonempty subsets of {1..n} such that it is possible to choose a different element from each.

Original entry on oeis.org

1, 1, 3, 32, 1201, 151286, 62453670, 84707326890, 384641855115279
Offset: 0

Views

Author

Gus Wiseman, Jan 01 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(2) = 3 set-systems:
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
Non-isomorphic representatives of the a(3) = 32 set-systems:
  {{1},{2},{3}}
  {{1},{2},{1,3}}
  {{1},{2},{1,2,3}}
  {{1},{1,2},{1,3}}
  {{1},{1,2},{2,3}}
  {{1},{1,2},{1,2,3}}
  {{1},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
		

Crossrefs

For a unique choice we have A003024, any length A367904 (ranks A367908).
Sets of n nonempty subsets of {1..n} are counted by A136556.
For any length we have A367902, ranks A367906, no singletons A367770.
The complement is A368600, any length A367903 (see also A367907, A367769).
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]>0&]],{n,0,3}]
  • Python
    from itertools import combinations, product, chain
    def v(c):
        for elements in product(*c):
            if len(set(elements)) == len(elements):
                return True
        return False
    def a(n):
        if n == 0:
            return 1
        subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in
    range(1, n + 1)))
        cs = combinations(subsets, n)
        c = sum(1 for c in cs if v(c))
        return c
    [print(a(n)) for n in range(7)] # Robert P. P. McKone, Jan 02 2024

Formula

a(n) + A368600(n) = A136556(n).

Extensions

a(6) from Robert P. P. McKone, Jan 02 2024
a(7)-a(8) from Christian Sievers, Jul 25 2024

A369142 Number of labeled loop-graphs covering {1..n} such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 22, 616, 26084, 1885323, 253923163, 66619551326, 34575180977552, 35680008747431929, 73392583275070667841, 301348381377662031986734, 2471956814761854578316988092, 40530184362443276558060719358471, 1328619783326799871747200601484790193
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2024

Keywords

Comments

Also labeled loop-graphs covering n vertices with at least one connected component containing more edges than vertices.

Examples

			The a(0) = 0 through a(3) = 22 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{3},{1,2}}
                         {{1},{2},{3},{1,3}}
                         {{1},{2},{3},{2,3}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,2},{2,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{3},{1,2},{1,3}}
                         {{1},{3},{1,2},{2,3}}
                         {{1},{3},{1,3},{2,3}}
                         {{2},{3},{1,2},{1,3}}
                         {{2},{3},{1,2},{2,3}}
                         {{2},{3},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{2},{1,2},{1,3},{2,3}}
                         {{3},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{3},{1,2},{2,3}}
                         {{1},{2},{3},{1,3},{2,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{3},{1,2},{1,3},{2,3}}
                         {{2},{3},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

The version for a unique choice is A000272, unlabeled A000055.
Without the choice condition we have A006125, unlabeled A000088.
The case without loops is A367868, covering case of A367867.
For exactly n edges we have A368730, covering case of A368596.
The complement is counted by A369140, covering case of A368927.
This is the covering case of A369141.
For n edges and no loops we have A369144, covering A369143.
The unlabeled version is A369147, covering case of A369146.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable graphs, unlabeled A005703.
A133686 counts choosable graphs, covering A367869.
A322661 counts covering loop-graphs, connected A062740, unlabeled A322700.
A367902 counts choosable set-systems, complement A367903.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]],Union@@#==Range[n]&&Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Formula

Inverse binomial transform of A369141.
a(n) = A322661(n) - A369140(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A323819 Number of non-isomorphic connected set-systems covering n vertices.

Original entry on oeis.org

1, 1, 3, 30, 1912, 18662590, 12813206131799685, 33758171486592987138461432668177794, 1435913805026242504952006868879460423767388571975632398910903473535427583
Offset: 0

Views

Author

Gus Wiseman, Jan 30 2019

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 30 set-systems:
  {{1,2,3}}
  {{3},{1,2,3}}
  {{1,3},{2,3}}
  {{2,3},{1,2,3}}
  {{2},{3},{1,2,3}}
  {{2},{1,3},{2,3}}
  {{3},{1,3},{2,3}}
  {{1},{2,3},{1,2,3}}
  {{3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,3},{2,3}}
  {{2},{3},{1,3},{2,3}}
  {{1},{3},{2,3},{1,2,3}}
  {{2},{3},{2,3},{1,2,3}}
  {{3},{1,2},{1,3},{2,3}}
  {{2},{1,3},{2,3},{1,2,3}}
  {{3},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,3},{2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{2,3},{1,2,3}}
  {{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{1,3},{2,3},{1,2,3}}
  {{2},{3},{1,3},{2,3},{1,2,3}}
  {{3},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,3},{2,3},{1,2,3}}
  {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Cf. A000295, A003465, A016031, A048143, A055621 (not necessarily connected), A293510, A317795, A323817, A323818 (labeled case).

Programs

  • Mathematica
    nmax = 12;
    b[n_, i_, l_] := b[n, i, l] = If[n == 0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]], If[i < 1, 0, Sum[b[n - i*j, i - 1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]];
    f[n_] := If[n == 0, 2, b[n, n, {}] - b[n - 1, n - 1, {}]]/2;
    A055621 = f /@ Range[0, nmax];
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    Join[{1}, EULERi[A055621 // Rest]] (* Jean-François Alcover, Jan 31 2020, after Alois P. Heinz in A055621 *)

Formula

Inverse Euler transform of A055621.
Previous Showing 41-50 of 139 results. Next