cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 176 results. Next

A101638 Number of distinct 4-almost primes A014613 which are factors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1
Offset: 1

Views

Author

Jonathan Vos Post, Dec 10 2004

Keywords

Comments

This is the inverse Moebius transform of A101637. If we take the prime factorization of n = (p1^e1)*(p2^e2)* ... * (pj^ej) then a(n) = |{k: ek>=4}| + ((j-1)/2)*|{k: ek>=3}| + C(|{k: ek>=2}|,2) + C(j,4). The first term is the number of distinct 4th powers of primes in the factors of n (the first way of finding a 4-almost prime). The second term is the number of distinct cubes of primes, each of which can be multiplied by any of the other distinct primes, halved to avoid double-counts (the second way of finding a 4-almost prime). The third term is the number of distinct pairs of squares of primes in the factors of n (the third way of finding a 4-almost prime). The 4th term is the number of distinct products of 4 distinct primes, which is the number of combinations of j primes in the factors of n taken 4 at a time, A000332(j), (the 4th way of finding a 4-almost prime).

Examples

			a(96) = 2 because 96 = 16 * 6 hence divisible by the 4-almost prime 16 and also 96 = 24 * 4 hence divisible by the 4-almost prime 24.
		

References

  • Hardy, G. H. and Wright, E. M. Section 17.10 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Crossrefs

Programs

  • PARI
    a(n)=my(f=factor(n)[,2], v=apply(k->sum(i=1,#f,f[i]>k), [0..3])); v[4] + v[3]*(v[1]-1) + binomial(v[2],2) + v[2]*binomial(v[1]-1,2) + binomial(v[1],4) \\ Charles R Greathouse IV, Sep 14 2015

A275585 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_2(k)).

Original entry on oeis.org

1, 1, 6, 16, 52, 128, 373, 913, 2399, 5796, 14298, 33655, 79756, 183078, 419846, 942807, 2106176, 4633208, 10127557, 21870997, 46912648, 99639685, 210206722, 439777198, 914157490, 1886428608, 3869204040, 7884691072, 15976273573, 32182538964, 64484592372, 128518359868, 254868985099, 502950483815, 987904826874, 1931596634076
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 25 2016

Keywords

Comments

Euler transform of the sum of squares of divisors (A001157).

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), this sequence (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*sigma[2](d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 08 2017
  • Mathematica
    nmax = 35; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[2, k]), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(sigma_2(k)).
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A027847(k)*a(n-k) for n > 0. - Seiichi Manyama, Jun 08 2017
a(n) ~ exp(4*Pi * Zeta(3)^(1/4) * n^(3/4) / (3^(5/4) * 5^(1/4)) - Pi * 5^(1/4) * n^(1/4) / (8 * 3^(7/4) * Zeta(3)^(1/4)) + Zeta(3) / (8*Pi^2)) * Zeta(3)^(1/8) / (2^(3/2) * 15^(1/8) * n^(5/8)). - Vaclav Kotesovec, Mar 23 2018
G.f.: exp(Sum_{k>=1} sigma_3(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A316101 Sequence a_k of column k shifts left when Weigh transform is applied k times with a_k(n) = n for n<2; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 3, 3, 1, 0, 1, 1, 1, 4, 6, 6, 1, 0, 1, 1, 1, 5, 10, 16, 12, 1, 0, 1, 1, 1, 6, 15, 32, 43, 25, 1, 0, 1, 1, 1, 7, 21, 55, 105, 120, 52, 1, 0, 1, 1, 1, 8, 28, 86, 210, 356, 339, 113, 1, 0, 1, 1, 1, 9, 36, 126, 371, 826, 1227, 985, 247, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 24 2018

Keywords

Examples

			Square array A(n,k) begins:
  0,  0,   0,   0,   0,    0,    0,    0,    0, ...
  1,  1,   1,   1,   1,    1,    1,    1,    1, ...
  1,  1,   1,   1,   1,    1,    1,    1,    1, ...
  1,  1,   1,   1,   1,    1,    1,    1,    1, ...
  1,  2,   3,   4,   5,    6,    7,    8,    9, ...
  1,  3,   6,  10,  15,   21,   28,   36,   45, ...
  1,  6,  16,  32,  55,   86,  126,  176,  237, ...
  1, 12,  43, 105, 210,  371,  602,  918, 1335, ...
  1, 25, 120, 356, 826, 1647, 2961, 4936, 7767, ...
		

Crossrefs

Rows include (offsets may differ): A000004, A000012, A000027, A000217, A134465.
Main diagonal gives A316102.

Programs

  • Maple
    wtr:= proc(p) local b; b:= proc(n, i) option remember;
           `if`(n=0, 1, `if`(i<1, 0, add(binomial(p(i), j)*
             b(n-i*j, i-1), j=0..n/i))) end: j-> b(j$2)
          end:
    g:= proc(k) option remember; local b, t; b[0]:= j->
         `if`(j<2, j, b[k](j-1)); for t to k do
           b[t]:= wtr(b[t-1]) od: eval(b[0])
        end:
    A:= (n, k)-> g(k)(n):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    wtr[p_] := Module[{b}, b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[p[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; b[#, #]&];
    g[k_] := g[k] = Module[{b, t}, b[0][j_] := If[j < 2, j, b[k][j - 1]]; For[ t = 1, t <= k + 1, t++, b[t] = wtr[b[t - 1]]]; b[0]];
    A[n_, k_] := g[k][n];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jul 10 2018, after Alois P. Heinz *)

A007472 Shifts 2 places left when binomial transform is applied twice with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 1, 3, 9, 29, 105, 431, 1969, 9785, 52145, 296155, 1787385, 11428949, 77124569, 546987143, 4062341601, 31502219889, 254500383457, 2137863653811, 18639586581097, 168387382189709, 1573599537048265, 15189509662516063, 151243491212611217, 1551565158004180137
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of triangle A383235.

Programs

  • Maple
    bintr:= proc(p) local b;
              b:= proc(n) option remember; add(p(k)*binomial(n,k), k=0..n) end
            end:
    b:= (bintr@@2)(a):
    a:= n-> `if`(n<2, 1, b(n-2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 18 2012
  • Mathematica
    bintr[p_] := Module[{b}, b[n_] := b[n] = Sum [p[k]*Binomial[n, k], {k, 0, n}]; b]; b = a // bintr // bintr; a[n_] := If[n<2, 1, b[n-2]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 27 2014, after Alois P. Heinz *)
    (* another program *)
    B[x_] := (BesselK[0, 1] + BesselK[1, 1])*BesselI[0, Exp[x]] + (BesselI[1, 1] - BesselI[0, 1])*BesselK[0, Exp[x]];
    a[n_] := SeriesCoefficient[FullSimplify[Series[B[x], {x, 0, n}]],n] n!
    Table[a[n], {n, 0, 30}] (* Ven Popov, Apr 25 2025 *)

Formula

G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 2*x)) / (1 - 2*x). - Ilya Gutkovskiy, Jan 30 2022
E.g.f.: (BesselK(0, 1) + BesselK(1, 1)) * BesselI(0, exp(x)) + (BesselI(1, 1) - BesselI(0, 1)) * BesselK(0, exp(x)). - Ven Popov, Apr 25 2025

A316074 Sequence a_k of column k shifts left k places under Weigh transform and equals signum(n) for n=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 6, 2, 2, 1, 1, 1, 12, 4, 2, 2, 1, 1, 1, 25, 6, 3, 2, 2, 1, 1, 1, 52, 10, 5, 3, 2, 2, 1, 1, 1, 113, 17, 7, 4, 3, 2, 2, 1, 1, 1, 247, 29, 10, 6, 4, 3, 2, 2, 1, 1, 1, 548, 51, 17, 8, 5, 4, 3, 2, 2, 1, 1, 1, 1226, 89, 26, 12, 7, 5, 4, 3, 2, 2, 1, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Jun 23 2018

Keywords

Examples

			Triangle T(n,k) begins:
    1;
    1,  1;
    1,  1, 1;
    2,  1, 1, 1;
    3,  2, 1, 1, 1;
    6,  2, 2, 1, 1, 1;
   12,  4, 2, 2, 1, 1, 1;
   25,  6, 3, 2, 2, 1, 1, 1;
   52, 10, 5, 3, 2, 2, 1, 1, 1;
  113, 17, 7, 4, 3, 2, 2, 1, 1, 1;
		

Crossrefs

T(2n,n) gives A000009.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(T(i, k), j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    T:= (n, k)-> `if`(n
    				
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[T[i, k], j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]];
    T[n_, k_] := If[n < k, Sign[n], b[n - k, n - k, k]];
    Table[T[n, k], {n, 1, 16}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2018, after Alois P. Heinz *)

A007554 Unique attractor for (RIGHT then MOBIUS) transform.

Original entry on oeis.org

1, 1, 0, -1, -2, -3, -3, -4, -3, -3, -1, -2, 3, 2, 5, 8, 12, 11, 17, 16, 21, 25, 26, 25, 30, 32, 29, 32, 32, 31, 30, 29, 21, 23, 11, 17, 5, 4, -13, -15, -28, -29, -52, -53, -76, -78, -104, -105, -142, -139, -168, -179, -209, -210, -253, -249, -278, -294
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003238.
Cf. A054525.

Programs

  • Haskell
    import Data.List (genericIndex)
    a007554 n = genericIndex a007554_list (n-1)
    a007554_list = 1 : f 1 where
       f x = (sum $ zipWith (*) (map a008683 divs)
                                (map a007554 $ reverse divs)) : f (x + 1)
              where divs = a027750_row x
    -- Reinhard Zumkeller, Mar 16 2013
  • Mathematica
    a[n_] := a[n] = Sum[ MoebiusMu[ (n - 1)/d]*a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 58}] (* Jean-François Alcover, Jan 04 2012, from formula *)

Formula

a(n+1) = Sum_{d|n} mu(n/d) * a(d).
G.f. A(x) satisfies: A(x) = x + x * Sum_{k>=1} mu(k) * A(x^k). - Ilya Gutkovskiy, Jul 01 2021

A144042 Square array A(n,k), n>=1, k>=1, read by antidiagonals, with A(1,k)=1 and sequence a_k of column k shifts left when Euler transform applied k times.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 8, 9, 1, 1, 5, 13, 25, 20, 1, 1, 6, 19, 51, 77, 48, 1, 1, 7, 26, 89, 197, 258, 115, 1, 1, 8, 34, 141, 410, 828, 871, 286, 1, 1, 9, 43, 209, 751, 2052, 3526, 3049, 719, 1, 1, 10, 53, 295, 1260, 4337, 10440, 15538, 10834, 1842, 1, 1, 11, 64
Offset: 1

Views

Author

Alois P. Heinz, Sep 08 2008

Keywords

Examples

			Square array begins:
    1,   1,    1,     1,     1,     1,      1,      1, ...
    1,   1,    1,     1,     1,     1,      1,      1, ...
    2,   3,    4,     5,     6,     7,      8,      9, ...
    4,   8,   13,    19,    26,    34,     43,     53, ...
    9,  25,   51,    89,   141,   209,    295,    401, ...
   20,  77,  197,   410,   751,  1260,   1982,   2967, ...
   48, 258,  828,  2052,  4337,  8219,  14379,  23659, ...
  115, 871, 3526, 10440, 25512, 54677, 106464, 192615, ...
		

Crossrefs

Rows n=2-4 give: A000012, A000027, A034856.
Main diagonal gives A305725.
Cf. A316101.

Programs

  • Maple
    etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1,
            add(add(d*p(d), d=numtheory[divisors](j))*b(n-j), j=1..n)/n)
          end end:
    g:= proc(k) option remember; local b, t; b[0]:= j->
          `if`(j<2, j, b[k](j-1)); for t to k do
           b[t]:= etr(b[t-1]) od: eval(b[0])
        end:
    A:= (n, k)-> g(k)(n):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);  # revised Alois P. Heinz, Aug 27 2018
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = Module[{d, j}, If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]]; b]; A[n_, k_] := Module[{a, b, t}, b[1] = etr[a]; For[t = 2, t <= k, t++, b[t] = etr[b[t-1]]]; a = Function[m, If[m == 1, 1, b[k][m-1]]]; a[n]]; Table[Table[A[n, 1 + d-n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Dec 20 2013, translated from Maple *)

A274804 The exponential transform of sigma(n).

Original entry on oeis.org

1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The exponential transform [EXP] transforms an input sequence b(n) into the output sequence a(n). The EXP transform is the inverse of the logarithmic transform [LOG], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell's formula. For information about the logarithmic transform see A274805. The EXP transform is related to the multinomial transform, see A274760 and the second formula.
The definition of the EXP transform, see the second formula, shows that n >= 1. To preserve the identity LOG[EXP[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the exponential transform, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A178867 appear.
We observe that a(0) = 1 and provides no information about any value of b(n), this notwithstanding it is customary to start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the exponential transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A007446 and the first formula. The second program uses the definition of the exponential transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the exponential transform, see A274805.
Some EXP transform pairs are, n >= 1: A000435(n) and A065440(n-1); 1/A000027(n) and A177208(n-1)/A177209(n-1); A000670(n) and A075729(n-1); A000670(n-1) and A014304(n-1); A000045(n) and A256180(n-1); A000290(n) and A033462(n-1); A006125(n) and A197505(n-1); A053549(n) and A198046(n-1); A000311(n) and A006351(n); A030019(n) and A134954(n-1); A038048(n) and A053529(n-1); A193356(n) and A003727(n-1).

Examples

			Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
		

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
  • Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
    nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)

Formula

a(n) = Sum_{j=1..n} (binomial(n-1,j-1) * b(j) * a(n-j)), n >= 1 and a(0) = 1, with b(n) = A000203(n) = sigma(n).
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n!) with b(n) = sigma(n) = A000203(n).

A279220 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)*(2*k+1)/6)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 6, 7, 7, 7, 7, 8, 9, 9, 9, 10, 11, 13, 13, 13, 14, 15, 17, 17, 17, 18, 19, 21, 21, 22, 23, 25, 27, 27, 28, 29, 31, 33, 33, 34, 35, 37, 40, 41, 42, 44, 46, 50, 51, 52, 54, 56, 60, 61, 62, 64, 67, 72, 73, 75, 77, 81, 86, 87, 89, 91, 95, 100, 101, 103, 106, 111, 117, 119, 121, 125, 130, 137
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Number of partitions of n into nonzero square pyramidal numbers (A000330).

Examples

			a(6) = 2 because we have [5, 1] and [1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, (t->
          `if`(t*(t+1)*(2*t+1)/6>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(i*(i+1)*(2*i+1)/6)))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (k + 1) (2 k + 1)/6)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k*(k+1)*(2*k+1)/6)).

A282190 E.g.f.: 1/(1 + LambertW(1-exp(x))), where LambertW() is the Lambert W-function.

Original entry on oeis.org

1, 1, 5, 40, 447, 6421, 112726, 2338799, 55990213, 1519122598, 46066158817, 1543974969769, 56677405835276, 2261488166321697, 97455090037460785, 4510770674565054000, 223183550978156866507, 11755122645815049275521, 656670295411196201190366, 38779502115371642484125915, 2413908564514961126280655257
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2017

Keywords

Comments

Stirling transform of A000312.

Examples

			E.g.f.: A(x) = 1 + x/1! + 5*x^2/2! + 40*x^3/3! + 447*x^4/4! + 6421*x^5/5! + 112726*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, m^m, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    Range[0, 20]! CoefficientList[Series[1/(1 + ProductLog[1 - Exp[x]]), {x, 0, 20}], x]
    Join[{1}, Table[Sum[StirlingS2[n, k] k^k, {k, 1, n}], {n, 1, 20}]]
  • PARI
    x='x+O('x^50); Vec(serlaplace(1/(1 + lambertw(1-exp(x))))) \\ G. C. Greubel, Nov 12 2017

Formula

a(0) = 1, a(n) = Sum_{k=1..n} Stirling2(n,k)*k^k.
a(n) ~ n^n / (sqrt(1+exp(1)) * (log(1+exp(-1)))^(n+1/2) * exp(n)). - Vaclav Kotesovec, Feb 17 2017
Previous Showing 21-30 of 176 results. Next