cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A192382 Coefficient of x in the reduction by x^2 -> x+2 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 2, 4, 24, 80, 352, 1344, 5504, 21760, 87552, 349184, 1398784, 5591040, 22372352, 89473024, 357924864, 1431633920, 5726666752, 22906404864, 91626143744, 366503526400, 1466016202752, 5864060616704, 23456250855424, 93824986644480
Offset: 1

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)^n - (x-d)^n)/(2*d), where d = sqrt(x+2). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+2, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0, x) = 1 -> 1.
  p(1, x) = 2*x -> 2*x.
  p(2, x) = 2 + x + 3*x^2 -> 8 + 4*x.
  p(3, x) = 8*x + 4*x^2 + 4*x^3 -> 16 + 24*x.
  p(4, x) = 4 + 4*x + 21*x^2 + 10*x^3 + 5*x^4 -> 96 + 80*x.
From these, read A083086 = (1, 0, 9, 16, 96, ...) and A192382 =(0, 2, 4, 24, 80, ...).
		

Crossrefs

Programs

  • Magma
    [(4^(n-1) - (-2)^(n-1))/3: n in [1..40]]; // G. C. Greubel, Feb 19 2023
    
  • Maple
    seq(4^n*(1-(-1/2)^n)/3, n=0..24); # Peter Luschny, Oct 02 2019
  • Mathematica
    q[x_]:= x+2; d= Sqrt[x+2];
    p[n_, x_]:= ((x+d)^n - (x-d)^n)/(2 d); (* suggested by A162517 *)
    Table[Expand[p[n, x]], {n, 6}]
    reductionRules= {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x*q[x]^((y- 1)/2)};
    t = Table[FixedPoint[Expand[#1/. reductionRules] &, p[n,x]], {n,30}];
    Table[Coefficient[Part[t,n], x, 0], {n,30}] (* abs value of A083086 *)
    Table[Coefficient[Part[t,n], x, 1], {n,30}] (* 2*A003683 *)
    Table[Coefficient[Part[t,n]/2, x, 1], {n,30}] (* A003683 *)
    LinearRecurrence[{2,8}, {0,2}, 40] (* G. C. Greubel, Feb 19 2023 *)
  • SageMath
    [(4^(n-1) - (-2)^(n-1))/3 for n in range(1,41)] # G. C. Greubel, Feb 19 2023

Formula

Conjectures from Colin Barker, May 12 2014: (Start)
a(n) = 2^(n-2)*(2*(-1)^n + 2^n)/3 = 2*A003683(n-1).
a(n) = 2*a(n-1) + 8*a(n-2).
G.f.: 2*x^2 / ((1+2*x)*(1-4*x)). (End).
a(n) = 4^n*(1 - (-1/2)^n)/3. - Peter Luschny, Oct 02 2019
E.g.f: (1/3)*(2 + exp(2*x))*(sinh(x))^2. - G. C. Greubel, Feb 19 2023

A124860 A Jacobsthal-Pascal triangle.

Original entry on oeis.org

1, 1, 1, 3, 6, 3, 5, 15, 15, 5, 11, 44, 66, 44, 11, 21, 105, 210, 210, 105, 21, 43, 258, 645, 860, 645, 258, 43, 85, 595, 1785, 2975, 2975, 1785, 595, 85, 171, 1368, 4788, 9576, 11970, 9576, 4788, 1368, 171, 341, 3069, 12276, 28644, 42966, 42966, 28644, 12276, 3069, 341
Offset: 0

Views

Author

Paul Barry, Nov 10 2006

Keywords

Comments

Triangle T(n, k) read by rows given by [1, 2, -2, 0, 0, 0, ...] DELTA [1, 2, -2, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 11 2006

Examples

			Triangle begins
   1;
   1,   1;
   3,   6,   3;
   5,  15,  15,   5;
  11,  44,  66,  44,  11;
  21, 105, 210, 210, 105,  21;
  43, 258, 645, 860, 645, 258, 43;
		

Crossrefs

Cf. A001045, A003683 (row sums), A016095, A084938, A124862 (diagonal sums), A193449.

Programs

  • Magma
    A124860:= func< n,k | Binomial(n,k)*(2^(n+1) - (-1)^(n+1))/3 >;
    [A124860(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
    
  • Maple
    A := proc(n,k) ## n >= 0 and k = 0 .. n
        ((-1)^n+2^(n+1))/3*binomial(n, k)
    end proc: # Yu-Sheng Chang, Jan 15 2020
  • Mathematica
    jacobPascal[n_, k_]:= Binomial[n, k]*(2^(n+1) -(-1)^(n+1))/3; ColumnForm[Table[jacobPascal[n, k], {n,0,12}, {k,0,n}], Center] (* Alonso del Arte, Jan 16 2020 *)
  • SageMath
    def A124860(n,k): return binomial(n,k)*(2^(n+1) - (-1)^(n+1))/3
    flatten([[A124860(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023

Formula

G.f.: 1/(1 - x*(1+y) - 2*x^2*(1+y)^2).
T(n, k) = J(n+1) * C(n, k), where J(n) = A001045(n).
T(n, 0) = T(n, n) = A001045(n+1).
T(2*n, n) = A124862(n).
Sum_{k=0..n} T(n, k) = A003683(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A124861(n).
T(n, k) = T(n-1, k-1) + T(n-1, k) + 2*T(n-2, k-2) + 4*T(n-2, k-1) + 2*T(n-2, k), T(0, 0) = 1, T(n, k) = 0 if k < 0 or if k > n . - Philippe Deléham, Nov 11 2006
G.f.: T(0)/2, where T(k) = 1 + 1/(1 - (2*k + 1 + 2*x*(1+y))*x*(1 + y)/((2*k + 2 + 2*x*(1+y))*x*(1+y) + 1/T(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
From G. C. Greubel, Feb 17 2023: (Start)
T(n, n-k) = T(n, k).
T(n, 1) = A193449(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A003674 a(n) = 2^(n-1)*(2^n - (-1)^n).

Original entry on oeis.org

0, 3, 6, 36, 120, 528, 2016, 8256, 32640, 131328, 523776, 2098176, 8386560, 33558528, 134209536, 536887296, 2147450880, 8590000128, 34359607296, 137439215616, 549755289600, 2199024304128, 8796090925056
Offset: 0

Views

Author

Keywords

References

  • M. Gardner, Riddles of the Sphinx, New Mathematical Library, M.A.A., 1987, p. 145. Math. Rev. 89i:00015.

Crossrefs

Cf. A001045, A003683 (one-third), A062510, A071930.

Programs

  • Magma
    [(4^n -(-2)^n)/2: n in [0..40]]; // G. C. Greubel, Feb 17 2023
    
  • Mathematica
    Table[(4^n-(-2)^n)/2, {n,0,40}] (* G. C. Greubel, Feb 17 2023 *)
  • PARI
    a(n)=if(n<0,0,2^(n-1)*(2^n-(-1)^n))
    
  • SageMath
    [(4^n-(-2)^n)/2 for n in range(41)] # G. C. Greubel, Feb 17 2023

Formula

G.f.: 3*x/((1+2*x)*(1-4*x)).
a(n) = 3*A003683(n).
Given the 2 X 2 matrix M = [1,3; 3,1], a(n) = term (1,2) in M^n, n>0. - Gary W. Adamson, Aug 06 2010
From G. C. Greubel, Feb 17 2023: (Start)
a(n) = 2*a(n-1) + 8*a(n-2).
a(n) = 3*2^(n-1)*A001045(n).
a(n) = 2^(n-1)*A062510(n).
a(n) = (1/2)*A071930(n+1).
E.g.f.: (1/2)*(exp(4*x) - exp(-2*x)). (End)

A096977 a(n) = 4*a(n-1) + 3*a(n-2) - 14*a(n-3) + 8*a(n-4).

Original entry on oeis.org

0, 1, 2, 11, 36, 157, 598, 2447, 9672, 38913, 155194, 621683, 2484908, 9943269, 39765790, 159077719, 636281744, 2545185225, 10180624386, 40722730555, 162890456180, 651562756781, 2606249162982, 10425000380191, 41699994064216
Offset: 0

Views

Author

Paul Barry, Jul 17 2004

Keywords

Comments

Original name was: A Jacobsthal summation.
The convolution of A024000 and A003683. Inverse binomial transform is A055275, with interpolated zeros.

Crossrefs

Cf. A001654.

Programs

Formula

G.f.: x*(1-2*x)/((1-x)^2*(1+2*x)*(1-4*x)).
a(n) = 4*4^n/27 - 4*(-2)^n/27 + n/9.
a(n) = Sum_{k=0..n} A001045(k)^2.
a(n) = 4*a(n-1) + 3*a(n-2) - 14*a(n-3) + 8*a(n-4).

A099173 Array, A(k,n), read by diagonals: g.f. of k-th row x/(1-2*x-(k-1)*x^2).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 1, 2, 5, 8, 5, 0, 1, 2, 6, 12, 16, 6, 0, 1, 2, 7, 16, 29, 32, 7, 0, 1, 2, 8, 20, 44, 70, 64, 8, 0, 1, 2, 9, 24, 61, 120, 169, 128, 9, 0, 1, 2, 10, 28, 80, 182, 328, 408, 256, 10, 0, 1, 2, 11, 32, 101, 256, 547, 896, 985, 512, 11
Offset: 0

Views

Author

Ralf Stephan, Oct 13 2004

Keywords

Examples

			Square array, A(n, k), begins as:
  0, 1, 2,  3,  4,   5,    6,    7,     8, ... A001477;
  0, 1, 2,  4,  8,  16,   32,   64,   128, ... A000079;
  0, 1, 2,  5, 12,  29,   70,  169,   408, ... A000129;
  0, 1, 2,  6, 16,  44,  120,  328,   896, ... A002605;
  0, 1, 2,  7, 20,  61,  182,  547,  1640, ... A015518;
  0, 1, 2,  8, 24,  80,  256,  832,  2688, ... A063727;
  0, 1, 2,  9, 28, 101,  342, 1189,  4088, ... A002532;
  0, 1, 2, 10, 32, 124,  440, 1624,  5888, ... A083099;
  0, 1, 2, 11, 36, 149,  550, 2143,  8136, ... A015519;
  0, 1, 2, 12, 40, 176,  672, 2752, 10880, ... A003683;
  0, 1, 2, 13, 44, 205,  806, 3457, 14168, ... A002534;
  0, 1, 2, 14, 48, 236,  952, 4264, 18048, ... A083102;
  0, 1, 2, 15, 52, 269, 1110, 5179, 22568, ... A015520;
  0, 1, 2, 16, 56, 304, 1280, 6208, 27776, ... A091914;
Antidiagonal triangle, T(n, k), begins as:
  0;
  0,  1;
  0,  1,  2;
  0,  1,  2,  3;
  0,  1,  2,  4,  4;
  0,  1,  2,  5,  8,  5;
  0,  1,  2,  6, 12, 16,   6;
  0,  1,  2,  7, 16, 29,  32,   7;
  0,  1,  2,  8, 20, 44,  70,  64,   8;
  0,  1,  2,  9, 24, 61, 120, 169, 128,   9;
  0,  1,  2, 10, 28, 80, 182, 328, 408, 256,  10;
		

Crossrefs

Rows m: A001477 (m=0), A000079 (m=1), A000129 (m=2), A002605 (m=3), A015518 (m=4), A063727 (m=5), A002532 (m=6), A083099 (m=7), A015519 (m=8), A003683 (m=9), A002534 (m=10), A083102 (m=11), A015520 (m=12), A091914 (m=13).
Columns q: A000004 (q=0), A000012 (q=1), A009056 (q=2), A008586 (q=3).
Main diagonal gives A357502.

Programs

  • Magma
    A099173:= func< n,k | (&+[n^j*Binomial(k,2*j+1): j in [0..Floor(k/2)]]) >;
    [A099173(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
    
  • Mathematica
    A[k_, n_]:= Which[k==0, n, n==0, 0, True, ((1+Sqrt[k])^n - (1-Sqrt[k])^n)/(2 Sqrt[k])]; Table[A[k-n, n]//Simplify, {k, 0, 12}, {n, 0, k}]//Flatten (* Jean-François Alcover, Jan 21 2019 *)
  • PARI
    A(k,n)=sum(i=0,n\2,k^i*binomial(n,2*i+1))
    
  • SageMath
    def A099173(n,k): return sum( n^j*binomial(k, 2*j+1) for j in range((k//2)+1) )
    flatten([[A099173(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023

Formula

A(n, k) = Sum_{i=0..floor(k/2)} n^i * C(k, 2*i+1) (array).
Recurrence: A(n, k) = 2*A(n, k-1) + (n-1)*A(n, k-2), with A(n, 0) = 0, A(n, 1) = 1.
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n, n) = A357502(n).
A(n, k) = ((1+sqrt(n))^k - (1-sqrt(n))^k)/(2*sqrt(n)). - Jean-François Alcover, Jan 21 2019

A083217 a(n) = (2*5^n + (-1)^n)/3.

Original entry on oeis.org

1, 3, 17, 83, 417, 2083, 10417, 52083, 260417, 1302083, 6510417, 32552083, 162760417, 813802083, 4069010417, 20345052083, 101725260417, 508626302083, 2543131510417, 12715657552083, 63578287760417, 317891438802083
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Comments

Binomial transform of A003683 (without leading zero). Inverse binomial transform of A067411.
a(n) is the number of compositions of n when there are 3 types of 1 and 8 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Programs

  • Magma
    [(2*5^n +(-1)^n)/3: n in [0..40]]; // G. C. Greubel, Feb 17 2023
  • Mathematica
    LinearRecurrence[{4,5},{1,3},30] (* Harvey P. Dale, Sep 18 2018 *)
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b
    it = recur_gen2b(1,3,4,5, lambda n: 0)
    [next(it) for i in range(1,24)] # Zerinvary Lajos, Jul 03 2008
    

Formula

a(n) = (2*5^n + (-1)^n)/3.
G.f.: (1-x)/((1-5*x)*(1+x)).
E.g.f.: (2*exp(5*x) + exp(-x))/3
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n,j)*C(n-j,k)*J(n-j+1) where J(n) = A001045(n). - Paul Barry, May 19 2006
a(0)=1, a(n) = 5*a(n-1) - 2 if n is odd, and a(n) = 5*a(n) + 2 if n is even. - Vincenzo Librandi, Nov 18 2010

A109447 Binomial coefficients C(n,k) with n-k odd, read by rows.

Original entry on oeis.org

1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1

Views

Author

Philippe Deléham, Aug 27 2005

Keywords

Comments

The same as A119900 without 0's. A reflected version of A034867 or A202064. - Alois P. Heinz, Feb 07 2014
From Vladimir Shevelev, Feb 07 2014: (Start)
Also table of coefficients of polynomials P_1(x)=1, P_2(x)=2, for n>=2, P_(n+1)(x) = 2*P_n(x)+(x-1)* P_(n-1)(x). The polynomials P_n(x)/2^(n-1) are connected with sequences A000045 (x=5), A001045 (x=9), A006130 (x=13), A006131 (x=17), A015440 (x=21), A015441 (x=25), A015442 (x=29), A015443 (x=33), A015445 (x=37), A015446 (x=41), A015447 (x=45), A053404 (x=49); also the polynomials P_n(x) are connected with sequences A000129, A002605, A015518, A063727, A085449, A002532, A083099, A015519, A003683, A002534, A083102, A015520. (End)

Examples

			Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1,    3;
4,    4;
1,   10,  5;
6,   20,  6;
1,   21,  35,   7;
8,   56,  56,   8;
1,   36, 126,  84,  9;
10, 120, 252, 120, 10;
		

Crossrefs

Cf. A109446.

Programs

  • Maple
    T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
    seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 30 2005
Corrected offset by Alois P. Heinz, Feb 07 2014

A160444 Expansion of g.f.: x^2*(1 + x - x^2)/(1 - 2*x^2 - 2*x^4).

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 6, 10, 16, 28, 44, 76, 120, 208, 328, 568, 896, 1552, 2448, 4240, 6688, 11584, 18272, 31648, 49920, 86464, 136384, 236224, 372608, 645376, 1017984, 1763200, 2781184, 4817152, 7598336, 13160704, 20759040, 35955712, 56714752
Offset: 1

Views

Author

Willibald Limbrunner (w.limbrunner(AT)gmx.de), May 14 2009

Keywords

Comments

This sequence is the case k=3 of a family of sequences with recurrences a(2*n+1) = a(2*n) + a(2*n-1), a(2*n+2) = k*a(2*n-1) + a(2*n), a(1)=0, a(2)=1. Values of k, for k >= 0, are given by A057979 (k=0), A158780 (k=1), A002965 (k=2), this sequence (k=3). See "Family of sequences for k" link for other connected sequences.
It seems that the ratio of two successive numbers with even, or two successive numbers with odd, indices approaches sqrt(k) for these sequences as n-> infinity.
This algorithm can be found in a historical figure named "Villardsche Figur" of the 13th century. There you can see a geometrical interpretation.

Crossrefs

Programs

  • Magma
    I:=[0,1,1,1]; [n le 4 select I[n] else 2*(Self(n-2) +Self(n-4)): n in [1..40]]; // G. C. Greubel, Feb 18 2023
    
  • Mathematica
    LinearRecurrence[{0,2,0,2}, {0,1,1,1}, 40] (* G. C. Greubel, Feb 18 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A160444
        if (n<5): return ((n+1)//3)
        else: return 2*(a(n-2) + a(n-4))
    [a(n) for n in range(1, 41)] # G. C. Greubel, Feb 18 2023

Formula

a(n) = 2*a(n-2) + 2*a(n-4).
a(2*n+1) = A002605(n).
a(2*n) = A026150(n-1).

Extensions

Edited by R. J. Mathar, May 14 2009

A099138 a(n) = 6^(n-1)*J(n), where J(n) = A001045(n).

Original entry on oeis.org

0, 1, 6, 108, 1080, 14256, 163296, 2006208, 23794560, 287214336, 3436494336, 41298398208, 495217981440, 5944792559616, 71324450021376, 855971764420608, 10271190988062720, 123257112966660096, 1479068428940476416
Offset: 0

Views

Author

Paul Barry, Sep 29 2004

Keywords

Comments

In general k^(n-1)*J(n), where J(n) = A001045(n), is given by ((2*k)^n - (-k)^n)/(3*k) with g.f. x/((1+k*x)*(1-2*k*x)).

Crossrefs

Programs

  • Magma
    [(12^n - (-6)^n)/18: n in [0..40]]; // G. C. Greubel, Feb 18 2023
    
  • Mathematica
    LinearRecurrence[{6,72}, {0,1}, 40] (* G. C. Greubel, Feb 18 2023 *)
  • SageMath
    [(12^n - (-6)^n)/18 for n in range(41)] # G. C. Greubel, Feb 18 2023

Formula

G.f.: x/((1+6*x)*(1-12*x)).
a(n) = 6^(n-1)*Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k) * 2^k.
a(n) = (12^n - (-6)^n)/18.
a(n) = 6^(n-1)*A001045(n).
E.g.f.: (1/18)*(exp(12*x) - exp(-6*x)). - G. C. Greubel, Feb 18 2023
Previous Showing 11-20 of 27 results. Next