cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 53 results. Next

A307978 Expansion of e.g.f. exp((sinh(x) - sin(x))/2).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 10, 1, 0, 280, 120, 1, 15400, 17160, 2080, 1401401, 3203200, 1290640, 190623040, 775975201, 712150400, 36321556720, 239000886400, 413465452401, 9339501072000, 91625659447400, 266045692290560, 3216459513124001, 42923384190336000, 193108117771690680
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2019

Keywords

Comments

Number of partitions of n-set into blocks congruent to 3 mod 4.

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Exp[(Sinh[x] - Sin[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Boole[MemberQ[{3}, Mod[k, 4]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 29}]
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp((sinh(x)-sin(x))/2))) \\ Seiichi Manyama, Mar 17 2022
    
  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-3)\4, binomial(n-1, 4*k+2)*a(n-4*k-3))); \\ Seiichi Manyama, Mar 17 2022

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-3)/4)} binomial(n-1,4*k+2) * a(n-4*k-3). - Seiichi Manyama, Mar 17 2022

A009227 Expansion of e.g.f.: exp(sinh(x))/exp(x).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 10, 1, 56, 281, 246, 4621, 16412, 53197, 564642, 1937937, 13309648, 100397649, 454215214, 4082253589, 26498068420, 174791970677, 1575851086778, 10628056916313, 91523101970104, 788580099169337, 6237722665351750, 60190551618214941
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n-set in which block sizes are odd and greater than 1. - Vladeta Jovovic, Aug 23 2007

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, 2*j)*a(n-2*j-1), j=1..(n-1)/2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 09 2022
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Sinh[x]]/Exp[x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 18 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(sinh(x))/exp(x))) \\ Michel Marcus, Apr 09 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..floor((n-1)/2)} binomial(n-1,2*k) * a(n-2*k-1). - Ilya Gutkovskiy, Apr 09 2022

Extensions

Extended and signs tested by Olivier Gérard, Mar 15 1997
Definition clarified and prior Mathematica program replaced by Harvey P. Dale, Jan 18 2015

A011800 Number of labeled forests of n nodes each component of which is a path.

Original entry on oeis.org

1, 1, 2, 7, 34, 206, 1486, 12412, 117692, 1248004, 14625856, 187638716, 2614602112, 39310384192, 634148436104, 10923398137576, 200069534481616, 3882002527006352, 79535575126745632, 1715658099715217584
Offset: 0

Views

Author

Herbert S. Wilf

Keywords

Comments

Denote the bivariate exponential g.f. by g(x,y)=exp(y*f(x)) where f(x)=(2x-x^2)/(2-2x). Then this sequence is the row sums of the array defined by the g.f. The differential dg/dy = f(x)*exp(y*f(x)) is the exponential generating function for an array with row sums in A201720. - R. J. Mathar, Jun 27 2022

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (3.3.6).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.15(d).

Programs

  • Mathematica
    Function[ esl, esl*Array[ Factorial, Length[ esl ], 0 ] ][ CoefficientList[ Series[ Exp[ x+x^2/(2-2x) ], {x, 0, 20} ], x ] ] (* Olivier Gérard *)
    With[{nn=20},CoefficientList[Series[Exp[x+x^2/(2*(1-x))],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 13 2019 *)
  • Maxima
    a(n):=n!*sum(sum(binomial(k,n-k-i)*binomial(k+i-1,k-1)*2^(-n+k+i)*(-1)^(n-k-i),i,0,n-k)/(k!),k,1,n); /* Vladimir Kruchinin, Nov 25 2012 */

Formula

E.g.f.: exp[ x + x^2/(2*(1 - x)) ].
a(n) = Sum_{k=0..n} |Stirling1(n, k)|*A003724(k). - Vladeta Jovovic, Oct 19 2003
Recurrence: 2*a(n) = 2*(2*n-1)*a(n-1) - 2*(n-1)^2*a(n-2) + (n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 07 2012
a(n) ~ 2^(-3/4)*exp(sqrt(2*n)-n+1/4)*n^(n-1/4). - Vaclav Kotesovec, Oct 07 2012
a(n) = n!*Sum_{k=1..n} (Sum_{i=0..n-k} binomial(k,n-k-i)*binomial(k+i-1,k-1)*2^(-n+k+i)*(-1)^(n-k-i))/k!, n > 0, a(0) = 1. - Vladimir Kruchinin, Nov 25 2012

A115276 Number of partitions of {1,...,n} into block sizes not a multiple of 4.

Original entry on oeis.org

1, 1, 2, 5, 14, 47, 173, 702, 3124, 14901, 76405, 417210, 2411466, 14731095, 94573911, 636575050, 4480990936, 32887804361, 251236573561, 1993395483746, 16397468177406, 139634290253907, 1229013163330947, 11166172488138322, 104593176077399652
Offset: 0

Views

Author

Christian G. Bower, Jan 18 2006

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
          irem(j, 4)=0, 0, binomial(n-1, j-1)*a(n-j)), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 17 2015
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[If[Mod[j, 4] == 0, 0, Binomial[n - 1, j - 1]*a[n - j]], {j, 1, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)

Formula

E.g.f.: exp(sinh(x)+(cosh(x)-cos(x))/2).

A219503 Expansion of e.g.f. Sum_{n>=0} (n+1)^(n-1) * sinh(x)^n / n!.

Original entry on oeis.org

1, 1, 3, 17, 137, 1457, 19355, 308961, 5766353, 123285153, 2972114803, 79782059249, 2360417058521, 76319622510289, 2677629295171979, 101318751122847297, 4113158120834726049, 178328823993199602241, 8223999403291995520995, 401989145900847087408849
Offset: 0

Views

Author

Paul D. Hanna, Nov 20 2012

Keywords

Comments

Compare to the LambertW identity: Sum_{n>=0} (n+1)^(n-1)*exp(-n*x)*x^n/n! = exp(x).

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 137*x^4/4! + 1457*x^5/5! +...
where
A(x) = 1 + sinh(x) + 3^1*sinh(x)^2/2! + 4^2*sinh(x)^3/3! + 5^3*sinh(x)^4/4! +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-LambertW[-Sinh[x]]/Sinh[x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 08 2013 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,(k+1)^(k-1)*sinh(x + x*O(x^n))^k/k!),n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f.: LambertW(-sinh(x)) / (-sinh(x)).
a(n) ~ (1+exp(2))^(1/4) * n^(n-1) / (exp(n-1) * log(exp(-1) +sqrt(1+exp(-2)))^(n-1/2)). - Vaclav Kotesovec, Jul 08 2013
a(n) = Sum_{k=0..n} (k+1)^(k-1) * A136630(n,k). - Seiichi Manyama, Feb 15 2025

A275679 Number of set partitions of [n] with alternating block size parities.

Original entry on oeis.org

1, 1, 1, 4, 3, 20, 43, 136, 711, 1606, 12653, 36852, 250673, 1212498, 6016715, 45081688, 196537387, 1789229594, 8963510621, 76863454428, 512264745473, 3744799424978, 32870550965259, 219159966518160, 2257073412153459, 15778075163815474, 165231652982941085
Offset: 0

Views

Author

Alois P. Heinz, Aug 05 2016

Keywords

Examples

			a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 3: 1234, 1|23|4, 1|24|3.
a(5) = 20: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|2|45, 145|23, 14|235, 15|234, 1|2345, 14|2|35, 15|2|34.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, add(
          `if`((i+t)::odd, b(n-i, 1-t)*binomial(n-1, i-1), 0), i=1..n))
        end:
    a:= n-> `if`(n=0, 1, b(n, 0)+b(n, 1)):
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, t_] := b[n, t] = If[n==0, 1, Sum[If[OddQ[i+t], b[n-i, 1-t] * Binomial[n-1, i-1], 0], {i, 1, n}]]; a[n_] := If[n==0, 1, b[n, 0] + b[n, 1]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)

A331608 E.g.f.: exp(1 / (1 - sinh(x)) - 1).

Original entry on oeis.org

1, 1, 3, 14, 85, 632, 5559, 56352, 645929, 8252352, 116189291, 1786361216, 29764770941, 534082233856, 10264484355103, 210312181051392, 4575364233983057, 105310034714202112, 2556360647841415379, 65261358332774277120, 1747713179543456515749
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[1/(1 - Sinh[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
    A006154[n_] := Sum[Sum[(-1)^j (k - 2 j)^n Binomial[k, j]/2^k, {j, 0, k}], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A006154[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A006154(k) * a(n-k).
a(n) ~ exp(1/(2^(3/2) * log(1 + sqrt(2))) - 3/4 + 2^(3/4) * sqrt(n) / sqrt(log(1 + sqrt(2))) - n) * n^(n - 1/4) / (2^(5/8) * log(1 + sqrt(2))^(n + 1/4)). - Vaclav Kotesovec, Jan 27 2020

A113775 Number of sets of lists (cf. A000262) whose list sizes are not a multiple of 3.

Original entry on oeis.org

1, 1, 3, 7, 49, 321, 2131, 19783, 195777, 2101249, 25721731, 340358151, 4902173233, 75688032577, 1253701725459, 22347046050631, 418439924732161, 8318748086461953, 175769214730290307, 3871849719998940679, 89734800330818444721, 2187944831367633226561
Offset: 0

Views

Author

Vladeta Jovovic, Jan 19 2006

Keywords

Crossrefs

Programs

  • Maple
    nmax := 30: B := x*(1+x)/(1-x^3) : egf := 0 : for i from 0 to nmax do egf := convert(egf+taylor(B^i,x=0,nmax+1)/i!,polynom) : od: for i from 0 to nmax do printf("%d ", i!*coeftayl(egf,x=0,i)) ; od: # R. J. Mathar, Feb 06 2008
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(0=
          irem(j, 3), 0, a(n-j)*j!*binomial(n-1, j-1)), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    CoefficientList[Series[E^(x*(1+x)/(1-x^3)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 25 2013 *)

Formula

E.g.f.: exp(x*(1+x)/(1-x^3)).
a(n) = a(n-1) + 2*(n-1)*a(n-2) + 2*(n-3)*(n-2)*(n-1)*a(n-3) + 2*(n-3)*(n-2)*(n-1)*a(n-4) + (n-4)*(n-3)*(n-2)*(n-1)*a(n-5) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6). - Vaclav Kotesovec, Sep 25 2013
a(n) ~ 6^(-1/4) * n^(n-1/4) * exp(2/3*sqrt(6*n)-n) * (1 - 43/(48*sqrt(6*n))). - Vaclav Kotesovec, Sep 25 2013

Extensions

2 more terms from R. J. Mathar, Feb 06 2008

A333882 Expansion of e.g.f. exp(Sum_{k>=0} x^(5*k + 1) / (5*k + 1)!).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 464, 1399, 7801, 45410, 216581, 853218, 2896002, 11708734, 79817500, 615700986, 4012571831, 21538473686, 98707812691, 501634082800, 3983368886226, 37404203343457, 305886831698593, 2069143637726674, 11924094649669375
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 08 2020

Keywords

Comments

Number of partitions of n-set into blocks congruent to 1 mod 5.

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Exp[Sum[x^(5 k + 1)/(5 k + 1)!, {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Boole[MemberQ[{1}, Mod[k, 5]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 29}]
    nmax = 30; CoefficientList[Series[Exp[x*HypergeometricPFQ[{}, {2/5, 3/5, 4/5, 6/5}, x^5/3125]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2020 *)

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/5)} binomial(n-1,5*k) * a(n-5*k-1). - Seiichi Manyama, Sep 22 2023

A351937 Expansion of e.g.f. exp( (sinh(x) + x*cosh(x)) / 2 ).

Original entry on oeis.org

1, 1, 1, 3, 9, 24, 99, 418, 1769, 9320, 49541, 278912, 1764825, 11319784, 77850287, 570610472, 4290387409, 34316005632, 285335249065, 2455224885440, 22165590003849, 206191758121856, 1989511661589435, 19903718061574144, 204795484665487865, 2179948112062667392
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[(Sinh[x] + x Cosh[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 2 k] (k + 1) a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp((sinh(x) + x*cosh(x))/2))) \\ Michel Marcus, Feb 26 2022

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * (k+1) * a(n-2*k-1).
Previous Showing 11-20 of 53 results. Next