A307978
Expansion of e.g.f. exp((sinh(x) - sin(x))/2).
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 10, 1, 0, 280, 120, 1, 15400, 17160, 2080, 1401401, 3203200, 1290640, 190623040, 775975201, 712150400, 36321556720, 239000886400, 413465452401, 9339501072000, 91625659447400, 266045692290560, 3216459513124001, 42923384190336000, 193108117771690680
Offset: 0
-
nmax = 29; CoefficientList[Series[Exp[(Sinh[x] - Sin[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Boole[MemberQ[{3}, Mod[k, 4]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 29}]
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp((sinh(x)-sin(x))/2))) \\ Seiichi Manyama, Mar 17 2022
-
a(n) = if(n==0, 1, sum(k=0, (n-3)\4, binomial(n-1, 4*k+2)*a(n-4*k-3))); \\ Seiichi Manyama, Mar 17 2022
A009227
Expansion of e.g.f.: exp(sinh(x))/exp(x).
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 10, 1, 56, 281, 246, 4621, 16412, 53197, 564642, 1937937, 13309648, 100397649, 454215214, 4082253589, 26498068420, 174791970677, 1575851086778, 10628056916313, 91523101970104, 788580099169337, 6237722665351750, 60190551618214941
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, 2*j)*a(n-2*j-1), j=1..(n-1)/2))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Apr 09 2022
-
With[{nn=30},CoefficientList[Series[Exp[Sinh[x]]/Exp[x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 18 2015 *)
-
my(x='x+O('x^30)); Vec(serlaplace(exp(sinh(x))/exp(x))) \\ Michel Marcus, Apr 09 2022
Definition clarified and prior Mathematica program replaced by
Harvey P. Dale, Jan 18 2015
A011800
Number of labeled forests of n nodes each component of which is a path.
Original entry on oeis.org
1, 1, 2, 7, 34, 206, 1486, 12412, 117692, 1248004, 14625856, 187638716, 2614602112, 39310384192, 634148436104, 10923398137576, 200069534481616, 3882002527006352, 79535575126745632, 1715658099715217584
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (3.3.6).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.15(d).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Tobias Boege, Thomas Kahle, Construction Methods for Gaussoids, arXiv:1902.11260 [math.CO], 2019.
- Samuele Giraudo, Combalgebraic structures on decorated cliques, Formal Power Series and Algebraic Combinatorics, Séminaire Lotharingien de Combinatoire, 78B.15, 2017, p. 8, arXiv:1709.08416 [math.CO], 2017.
- J. Rasku, T. Karkkainen, P. Hotokka, Solution Space Visualization as a Tool for Vehicle Routing Algorithm Development, Proc. FORS-40, pp. 9-12, 2013.
-
Function[ esl, esl*Array[ Factorial, Length[ esl ], 0 ] ][ CoefficientList[ Series[ Exp[ x+x^2/(2-2x) ], {x, 0, 20} ], x ] ] (* Olivier Gérard *)
With[{nn=20},CoefficientList[Series[Exp[x+x^2/(2*(1-x))],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 13 2019 *)
-
a(n):=n!*sum(sum(binomial(k,n-k-i)*binomial(k+i-1,k-1)*2^(-n+k+i)*(-1)^(n-k-i),i,0,n-k)/(k!),k,1,n); /* Vladimir Kruchinin, Nov 25 2012 */
A115276
Number of partitions of {1,...,n} into block sizes not a multiple of 4.
Original entry on oeis.org
1, 1, 2, 5, 14, 47, 173, 702, 3124, 14901, 76405, 417210, 2411466, 14731095, 94573911, 636575050, 4480990936, 32887804361, 251236573561, 1993395483746, 16397468177406, 139634290253907, 1229013163330947, 11166172488138322, 104593176077399652
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
irem(j, 4)=0, 0, binomial(n-1, j-1)*a(n-j)), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 17 2015
-
a[n_] := a[n] = If[n == 0, 1, Sum[If[Mod[j, 4] == 0, 0, Binomial[n - 1, j - 1]*a[n - j]], {j, 1, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
A219503
Expansion of e.g.f. Sum_{n>=0} (n+1)^(n-1) * sinh(x)^n / n!.
Original entry on oeis.org
1, 1, 3, 17, 137, 1457, 19355, 308961, 5766353, 123285153, 2972114803, 79782059249, 2360417058521, 76319622510289, 2677629295171979, 101318751122847297, 4113158120834726049, 178328823993199602241, 8223999403291995520995, 401989145900847087408849
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 137*x^4/4! + 1457*x^5/5! +...
where
A(x) = 1 + sinh(x) + 3^1*sinh(x)^2/2! + 4^2*sinh(x)^3/3! + 5^3*sinh(x)^4/4! +...
-
CoefficientList[Series[-LambertW[-Sinh[x]]/Sinh[x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 08 2013 *)
-
{a(n)=n!*polcoeff(sum(k=0,n,(k+1)^(k-1)*sinh(x + x*O(x^n))^k/k!),n)}
for(n=0,25,print1(a(n),", "))
A275679
Number of set partitions of [n] with alternating block size parities.
Original entry on oeis.org
1, 1, 1, 4, 3, 20, 43, 136, 711, 1606, 12653, 36852, 250673, 1212498, 6016715, 45081688, 196537387, 1789229594, 8963510621, 76863454428, 512264745473, 3744799424978, 32870550965259, 219159966518160, 2257073412153459, 15778075163815474, 165231652982941085
Offset: 0
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 3: 1234, 1|23|4, 1|24|3.
a(5) = 20: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|2|45, 145|23, 14|235, 15|234, 1|2345, 14|2|35, 15|2|34.
Cf.
A003724,
A005046,
A007837,
A038041,
A275309,
A275310,
A275311,
A275312,
A275313,
A286076,
A361804.
-
b:= proc(n, t) option remember; `if`(n=0, 1, add(
`if`((i+t)::odd, b(n-i, 1-t)*binomial(n-1, i-1), 0), i=1..n))
end:
a:= n-> `if`(n=0, 1, b(n, 0)+b(n, 1)):
seq(a(n), n=0..35);
-
b[n_, t_] := b[n, t] = If[n==0, 1, Sum[If[OddQ[i+t], b[n-i, 1-t] * Binomial[n-1, i-1], 0], {i, 1, n}]]; a[n_] := If[n==0, 1, b[n, 0] + b[n, 1]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)
A331608
E.g.f.: exp(1 / (1 - sinh(x)) - 1).
Original entry on oeis.org
1, 1, 3, 14, 85, 632, 5559, 56352, 645929, 8252352, 116189291, 1786361216, 29764770941, 534082233856, 10264484355103, 210312181051392, 4575364233983057, 105310034714202112, 2556360647841415379, 65261358332774277120, 1747713179543456515749
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[1/(1 - Sinh[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
A006154[n_] := Sum[Sum[(-1)^j (k - 2 j)^n Binomial[k, j]/2^k, {j, 0, k}], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A006154[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
A113775
Number of sets of lists (cf. A000262) whose list sizes are not a multiple of 3.
Original entry on oeis.org
1, 1, 3, 7, 49, 321, 2131, 19783, 195777, 2101249, 25721731, 340358151, 4902173233, 75688032577, 1253701725459, 22347046050631, 418439924732161, 8318748086461953, 175769214730290307, 3871849719998940679, 89734800330818444721, 2187944831367633226561
Offset: 0
-
nmax := 30: B := x*(1+x)/(1-x^3) : egf := 0 : for i from 0 to nmax do egf := convert(egf+taylor(B^i,x=0,nmax+1)/i!,polynom) : od: for i from 0 to nmax do printf("%d ", i!*coeftayl(egf,x=0,i)) ; od: # R. J. Mathar, Feb 06 2008
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(0=
irem(j, 3), 0, a(n-j)*j!*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 10 2016
-
CoefficientList[Series[E^(x*(1+x)/(1-x^3)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 25 2013 *)
A333882
Expansion of e.g.f. exp(Sum_{k>=0} x^(5*k + 1) / (5*k + 1)!).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 464, 1399, 7801, 45410, 216581, 853218, 2896002, 11708734, 79817500, 615700986, 4012571831, 21538473686, 98707812691, 501634082800, 3983368886226, 37404203343457, 305886831698593, 2069143637726674, 11924094649669375
Offset: 0
-
nmax = 29; CoefficientList[Series[Exp[Sum[x^(5 k + 1)/(5 k + 1)!, {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Boole[MemberQ[{1}, Mod[k, 5]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 29}]
nmax = 30; CoefficientList[Series[Exp[x*HypergeometricPFQ[{}, {2/5, 3/5, 4/5, 6/5}, x^5/3125]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2020 *)
A351937
Expansion of e.g.f. exp( (sinh(x) + x*cosh(x)) / 2 ).
Original entry on oeis.org
1, 1, 1, 3, 9, 24, 99, 418, 1769, 9320, 49541, 278912, 1764825, 11319784, 77850287, 570610472, 4290387409, 34316005632, 285335249065, 2455224885440, 22165590003849, 206191758121856, 1989511661589435, 19903718061574144, 204795484665487865, 2179948112062667392
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[(Sinh[x] + x Cosh[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 2 k] (k + 1) a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp((sinh(x) + x*cosh(x))/2))) \\ Michel Marcus, Feb 26 2022
Comments