cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A187617 Array T(m,n) read by antidiagonals: number of domino tilings of the 2m X 2n grid (m>=0, n>=0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 13, 36, 13, 1, 1, 34, 281, 281, 34, 1, 1, 89, 2245, 6728, 2245, 89, 1, 1, 233, 18061, 167089, 167089, 18061, 233, 1, 1, 610, 145601, 4213133, 12988816, 4213133, 145601, 610, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 11 2011

Keywords

Comments

A099390 is the main entry for this problem.
The even-indexed rows and columns of the square array in A187596.
Row (and column) 2 is given by A122367. - Nathaniel Johnston, Mar 22 2011

Examples

			The array begins:
  1,  1,     1,       1,          1,            1, ...
  1,  2,     5,      13,         34,           89, ...
  1,  5,    36,     281,       2245,        18061, ...
  1, 13,   281,    6728,     167089,      4213133, ...
  1, 34,  2245,  167089,   12988816,   1031151241, ...
  1, 89, 18061, 4213133, 1031151241, 258584046368, ...
		

Crossrefs

A187618 is the triangle version.
Main diagonal is A004003. Second and third rows give A001519, A188899.

Programs

  • Maple
    ft:=(m,n)->
    2^(m*n/2)*mul( mul(
    (cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2);
    T:=(m,n)->round(evalf(ft(m,n),300));
  • Mathematica
    T[m_, n_] := Product[2(2 + Cos[(2j Pi)/(2m+1)] + Cos[(2k Pi)/(2n+1)]), {j, 1, m}, {k, 1, n}];
    Table[T[m-n, n] // Round, {m, 0, 8}, {n, 0, m}] // Flatten (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*cos(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))} \\ Seiichi Manyama, Jan 09 2021

Extensions

More terms from Nathaniel Johnston, Mar 22 2011

A242861 Triangle T(n,k) by rows: number of ways k dominoes can be placed on an n X n chessboard, k>=0.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 12, 44, 56, 18, 1, 24, 224, 1044, 2593, 3388, 2150, 552, 36, 1, 40, 686, 6632, 39979, 157000, 407620, 695848, 762180, 510752, 192672, 35104, 2180, 1, 60, 1622, 26172, 281514, 2135356, 11785382, 48145820, 146702793, 333518324, 562203148
Offset: 0

Views

Author

Ralf Stephan, May 24 2014

Keywords

Comments

Also, coefficients of the matching-generating polynomial of the n X n grid graph.
In the n-th row there are floor(n^2/2)+1 values.

Examples

			Triangle starts:
  1
  1
  1  4   2
  1 12  44   56    18
  1 24 224 1044  2593   3388   2150    552     36
  1 40 686 6632 39979 157000 407620 695848 762180 510752 192672 35104 2180
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l) option remember; local k;
          if n=0 then 1
        elif min(l[])>0 then b(n-1, map(h->h-1, l))
        else for k while l[k]>0 do od; expand(`if`(n>1,
             x*b(n, subsop(k=2, l)), 0) +`if`(k (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])):
    seq(T(n), n=0..8); # Alois P. Heinz, Jun 01 2014
  • Mathematica
    b[n_, l_List] := b[n, l] =  Module[{k}, Which[n == 0, 1, Min[l]>0, b[n-1, l-1], True, For[k=1, l[[k]]>0, k++]; Expand[If[n>1, x*b[n, ReplacePart[l, k -> 2]], 0] + If[k 1, k + 1 -> 1}]], 0] + b[n, ReplacePart[l, k -> 1]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, Array[0&, n]]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 16 2015, after Alois P. Heinz *)
  • Sage
    def T(n,k):
       G = Graph(graphs.Grid2dGraph(n,n))
       G.relabel()
       mu = G.matching_polynomial()
       return abs(mu[n^2-2*k])

Formula

T(n,1) = A046092(n-1), T(n,2) = A242856(n).
T(n,floor(n^2/2)) = A137308(n), T(2n,2n^2) = A004003(n).
sum(k>=0, T(n,k)) = A210662(n,n) = A028420(n).
T(n,3) = A243206(n), T(n,4) = A243215(n), T(n,5) = A243217(n), T(n,floor(n^2/4)) = A243221(n). - Alois P. Heinz, Jun 01 2014

A304662 Total number of domino tilings of Ferrers-Young diagrams summed over all partitions of 2n.

Original entry on oeis.org

1, 2, 6, 16, 42, 106, 268, 650, 1580, 3750, 8862, 20598, 47776, 109248, 248966, 562630, 1264780, 2823958, 6282198, 13884820, 30590124, 67051982, 146463790, 318588916, 690882926, 1492592450, 3215372064, 6904561416, 14786529836, 31574656096, 67261524262
Offset: 0

Views

Author

Alois P. Heinz, May 16 2018

Keywords

Examples

			a(2) = 6:
._.  .___.  ._._.  .___.  ._.___.  .___.___.
| |  |___|  | | |  |___|  | |___|  |___|___|
|_|  | |    |_|_|  |___|  |_|
| |  |_|
|_|
		

Crossrefs

Row sums of A304718.
Bisection (even part) of A304680.

Programs

  • Maple
    h:= proc(l, f) option remember; local k; if min(l[])>0 then
         `if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f)))
        else for k from nops(l) while l[k]>0 by -1 do od;
            `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
            `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
          fi
        end:
    g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
            `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
    b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
                      +b(n-i, min(n-i, i), [l[], i])):
    a:= n-> b(2*n$2, []):
    seq(a(n), n=0..12);
  • Mathematica
    h[l_, f_] := h[l, f] = Module[{k}, If[Min[l]>0, If[Length[f] == 0, 1, h[l[[1 ;; f[[1]]]]-1, ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]]>0, k--]; If[Length[f]>0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k>1 && l[[k-1]] == 0, h[ReplacePart[l, {k -> 1, k-1 -> 1}], f], 0]]];
    g[l_] := If[Sum[If[OddQ[l[[i]]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0];
    b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], b[n, i-1, l] + b[n-i, Min[n-i, i], Append[l, i]]];
    a[n_] := b[2n, 2n, {}];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..A304790(n)} k * A304789(n,k).
a(n) = Sum_{k=0..n} A304718(n,k).
a(n) = A296625(n) for n < 7.

A300060 Number of domino tilings of the diagram of the integer partition with Heinz number n.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 3, 0, 3, 1, 1, 0, 0, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 5, 0, 0, 1, 1, 0, 3, 0, 2, 0, 0, 0, 1, 1, 3, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 4, 1, 0, 0, 1, 0, 5, 1, 0, 2, 3, 0, 2, 1, 1, 1, 5, 0, 0, 1, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Programs

  • Maple
    h:= proc(l, f) option remember; local k; if min(l[])>0 then
         `if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f)))
        else for k from nops(l) while l[k]>0 by -1 do od;
            `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
            `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
          fi
        end:
    g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
            `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
    a:= n-> g(sort(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)):
    seq(a(n), n=1..120);  # Alois P. Heinz, May 22 2018
  • Mathematica
    h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[Map[Function[x, x-1], l[[Range @ f[[1]]]]], ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0, k-- ]; If[Length[f] > 0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k-1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]];
    g[l_] := If[Sum[If[OddQ @ l[[i]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, l[[1]]], ReplacePart[l, 1 -> Nothing]]], 0];
    a[n_] := g[Reverse @ Sort[ Flatten[ Map[ Function[i, Table[PrimePi[i[[1]]], i[[2]]]], FactorInteger[n]]]]];
    Array[a, 120] (* Jean-François Alcover, May 28 2018, after Alois P. Heinz *)

A189006 Array A(m,n) read by antidiagonals: number of domino tilings of the m X n grid with upper left corner removed iff m*n is odd, (m>=0, n>=0).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 4, 5, 1, 1, 1, 1, 8, 11, 11, 8, 1, 1, 1, 1, 13, 15, 36, 15, 13, 1, 1, 1, 1, 21, 41, 95, 95, 41, 21, 1, 1, 1, 1, 34, 56, 281, 192, 281, 56, 34, 1, 1, 1, 1, 55, 153, 781, 1183, 1183, 781, 153, 55, 1, 1, 1, 1, 89, 209, 2245, 2415, 6728, 2415, 2245, 209, 89, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2011

Keywords

Examples

			A(3,3) = 4, because there are 4 domino tilings of the 3 X 3 grid with upper left corner removed:
  . .___. . .___. . .___. . .___.
  ._|___| ._|___| ._| | | ._|___|
  | |___| | | | | | |_|_| |___| |
  |_|___| |_|_|_| |_|___| |___|_|
Array begins:
  1, 1,  1,  1,   1,    1,    1, ...
  1, 1,  1,  1,   1,    1,    1, ...
  1, 1,  2,  3,   5,    8,   13, ...
  1, 1,  3,  4,  11,   15,   41, ...
  1, 1,  5, 11,  36,   95,  281, ...
  1, 1,  8, 15,  95,  192, 1183, ...
  1, 1, 13, 41, 281, 1183, 6728, ...
		

Crossrefs

Rows m=0+1, 2-12 give: A000012, A000045(n+1), A002530(n+1), A005178(n+1), A189003, A028468, A189004, A028470, A189005, A028472, A210724, A028474.
Main diagonal gives: A189002.

Programs

  • Maple
    with(LinearAlgebra):
    A:= proc(m, n) option remember; local i, j, s, t, M;
          if m=0 or n=0 then 1
        elif m1 or j>1 or s=0 then
                   if j
    				
  • Mathematica
    A[1, 1] = 1; A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2];M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i-1)*m+j-s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t+1] = 1]; If[i < n, M[t, t+m] = 1-2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m-s, n*m-s}]]]]]; Table[Table[A[m, d-m], {m, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 26 2013, translated from Maple *)

A279887 Number of tilings of a sphinx of order n by elementary sphinxes (i.e., sphinxes of order 1).

Original entry on oeis.org

1, 1, 4, 16, 153, 71838, 5965398, 2614508085, 9822629511079, 28751930151895611, 162231215752303027270, 32813942272624544838651213, 1257159787425487037702548758466
Offset: 1

Views

Author

Greg Huber, Dec 21 2016

Keywords

Comments

Sphinx tilings are, by convention, understood to be improper tilings composed of two elementary shapes, order-1 sphinxes, that are mirror images of one another. In other words, one can prove that the tiling of an order-n sphinx requires both L-sphinxes and R-sphinxes (each composed of six equilateral triangles) for any n>1. The sequence terms are based on an initial search-tree method by G. Huber, confirmed and extended by Walter Trump using backtracking and a bit-vector method.
Least-squares fitting indicates a growth law in the form of an exponential of a quadratic in n (i.e., proportional to g^(area), where g is a constant).
a(9) from analysis of the tilings and associated seam factor of two hemisphinxes of order 9 (Walter Trump, personal communication). - Greg Huber, Mar 10 2017
a(10), a(11) from double hemisphinx method described above.

Examples

			For n=2, a(2)=1 and this single tiling of an order-2 L-sphinx with three elementary R-sphinxes and one elementary L-sphinx is shown in the Wikiwand link.
		

References

  • A. Martin, "The Sphinx Task Centre Problem" in C. Pritchard (ed.) The Changing Shape of Geometry, Cambridge Univ. Press, 2003, 371-378.

Crossrefs

Cf. A004003.

Extensions

a(9) from Greg Huber, Mar 10 2017
a(10)-a(11) from Greg Huber, May 10 2017
a(11) corrected by Walter Trump, Feb 25 2022
a(12)-a(13) from Walter Trump, Feb 25 2022

A300056 Number of normal standard domino tableaux whose shape is the integer partition with Heinz number n.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 3, 1, 0, 0, 3, 0, 3, 2, 1, 0, 0, 0, 0, 1, 0, 3, 1, 0, 4, 2, 0, 0, 1, 0, 0, 1, 0, 1, 6, 0, 0, 3, 1, 0, 4, 0, 5, 0, 0, 0, 1, 1, 8, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 6, 4, 0, 0, 1, 0, 6, 1, 0, 6, 5, 0, 6, 3, 1, 2, 10, 0, 0, 1, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2018

Keywords

Comments

A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. A standard domino tableau is a generalized Young tableau in which all rows and columns are weakly increasing and all regions are dominos. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(75) = 6 tableaux:
1 2 4   1 2 3   1 2 2   1 1 4   1 1 4   1 1 3
1 2 4   1 2 3   1 3 3   2 3 4   2 2 4   2 2 3
3 3     4 4     4 4     2 3     3 3     4 4
		

Crossrefs

A127605 a(n) = 2^(2*n*n) * Product_{i=1..n} Product_{j=1..n} (sin(i*Pi/(2*n+1))^2 + sin(j*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 6, 500, 463736, 4614756624, 485005220494432, 533978739649683515200, 6129678550595328659594928000, 731483813983605533022316212534132992, 905665520470954445892575061753881157482726912
Offset: 0

Views

Author

Miklos Kristof, Apr 03 2007

Keywords

Crossrefs

Programs

  • Maple
    for n from 0 to 12 do a[n]:=2^(2*n*n)*product(product(sin(i*Pi/(2*n+1))^2+ sin(j*Pi/(2*n+1))^2,j=1..n),i=1..n) od: seq(round(evalf(a[n],300)),n=0..12);
  • Mathematica
    Table[(2*n+1) * 2^(n*(2*n-1)) * Product[Product[Sin[i*Pi/(2*n + 1)]^2 + Sin[j*Pi/(2*n + 1)]^2, {i, 1, j-1}], {j, 2, n}]^2, {n, 0, 15}] // Round (* Vaclav Kotesovec, Dec 30 2020 *)

Formula

a(n) ~ Gamma(1/4) * exp(G*(2*n+1)^2/Pi) / (2^(3/2) * Pi^(3/4) * sqrt(n)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Dec 30 2020

A360499 Number of ways to tile an n X n square using rectangles with distinct dimensions.

Original entry on oeis.org

1, 1, 21, 269, 4489, 82981, 2995185, 118897973
Offset: 1

Views

Author

Scott R. Shannon, Feb 09 2023

Keywords

Comments

All possible tilings are counted, including those identical by symmetry. Note that distinct dimensions means that, for example, a 1 x 3 rectangle can only be used once, regardless of if it lies horizontally or vertically.

Examples

			a(1) = 1 as the only way to tile a 1 x 1 square is with a square with dimensions 1 x 1.
a(2) = 1 as the only way to tile a 2 x 2 square is with a square with dimensions 2 x 2.
a(3) = 21. The possible tilings, excluding those equivalent by symmetry, are:
.
  +---+---+---+   +---+---+---+   +---+---+---+   +---+---+---+
  |           |   |   |       |   |       |   |   |           |
  +           +   +---+---+---+   +---+---+   +   +---+---+---+
  |           |   |           |   |       |   |   |           |
  +           +   +           +   +       +   +   +           +
  |           |   |           |   |       |   |   |           |
  +---+---+---+   +---+---+---+   +---+---+---+   +---+---+---+
.
The first tiling can occur in 1 way, the second in 8 different ways, the third in 8 different ways and the fourth in 4 different ways, giving 21 ways in total.
		

Crossrefs

Cf. A360498 (oblongs), A182275 (not necessarily distinct dimensions), A004003, A099390, A065072, A233320, A230031.

A300789 Heinz numbers of integer partitions whose Young diagram can be tiled by dominos.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 12, 13, 16, 19, 21, 22, 25, 27, 28, 29, 34, 36, 37, 39, 40, 43, 46, 48, 49, 52, 53, 55, 57, 61, 62, 63, 64, 70, 71, 75, 76, 79, 81, 82, 84, 85, 87, 88, 89, 90, 91, 94, 100, 101, 107, 108, 111, 112, 113, 115, 116, 117, 118, 121, 129, 130, 131
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
This sequence is conjectured to be the Heinz numbers of integer partitions in which the odd parts appear as many times in even as in odd positions.

Examples

			Sequence of integer partitions whose Young diagram can be tiled by dominos begins: (), (2), (11), (4), (22), (31), (211), (6), (1111), (8), (42), (51), (33), (222), (411).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+
          `if`(n=1, 0, a(n-1)) while (l-> add(`if`(l[i]::odd,
           (-1)^i, 0), i=1..nops(l))<>0)(sort(map(i->
           numtheory[pi](i[1])$i[2], ifactors(k)[2]))) do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, May 22 2018
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Total[(-1)^Flatten[Position[primeMS[#],_?OddQ]]]===0&] (* Conjectured *)
Previous Showing 11-20 of 54 results. Next