A282792
Coefficients in q-expansion of E_2^2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
Original entry on oeis.org
1, -312, -122328, 1193376, 120735336, 123318576, -26119268064, -383848045248, -3132125965080, -18290795499096, -84925855577232, -331983655889184, -1133781877844448, -3470165144567184, -9697162366507968, -25093220330304576, -60786860467926552
Offset: 0
Cf.
A282102 (E_2*E_4*E_6), this sequence (E_2^2*E_4*E_6),
A282596 (E_2*E_4^2*E_6),
A282547 (E_2*E_4*E_6^2).
-
terms = 17;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^2*E6[x]*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A280024
Coefficients in q-expansion of E_2^4*E_4, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.
Original entry on oeis.org
1, 144, -17712, 524736, -2279088, -79760160, 71126208, 7093116288, 65399933520, 370698709968, 1592500629600, 5659924638528, 17465468914368, 48233085519456, 121766302456704, 285303917520000, 627654170451024, 1308136029869088, 2601247015228176
Offset: 0
-
terms = 19;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E2[x]^4*E4[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A281371
Coefficients in q-expansion of (E_2*E_4 - E_6)^2/518400, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
Original entry on oeis.org
0, 0, 1, 36, 492, 3608, 18828, 74760, 250352, 717984, 1866558, 4365580, 9635472, 19639032, 38559416, 71222616, 128258496, 219619968, 370366101, 597550068, 955638824, 1471571136, 2253173892, 3335433368, 4932972864, 7064391840, 10133162774, 14128072488, 19743952032, 26864847352
Offset: 0
-
with(numtheory); M:=100;
E := proc(k) local n, t1; global M;
t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
series(t1, q, M+1); end;
e2:=E(2); e4:=E(4); e6:=E(6);
t1:=series((e2*e4-e6)^2/518400,q,M+1);
seriestolist(t1);
-
terms = 30;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E2[x]*E4[x] - E6[x])^2/518400 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A281373
Coefficients in q-expansion of (E_2*E_4 - E_6)^2/(300*(E_6^2-E_4^3)), where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
Original entry on oeis.org
0, 1, 60, 1680, 30280, 405678, 4369680, 39729200, 315045840, 2230260741, 14340456648, 84870112272, 467160257760, 2411818867430, 11759239565472, 54457051387536, 240692336520352, 1019498573990610, 4152992658207660, 16319887656747248, 62032458633713904, 228608370781579488
Offset: 0
-
with(numtheory); M:=100;
E := proc(k) local n, t1; global M;
t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
series(t1, q, M+1); end;
e2:=E(2); e4:=E(4); e6:=E(6);
t1:=series((e2*e4-e6)^2/518400,q,M+1);
t2:=series((e4^3-e6^2)/1728,q,M+1);
t3:=series(t1/t2,q,M+1);
seriestolist(t3);
-
terms = 22;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E2[x]*E4[x] - E6[x])^2/(300*(E6[x]^2 - E4[x]^3)) + O[x]^terms // CoefficientList[#, x]& // Abs (* Jean-François Alcover, Feb 27 2018 *)
A282328
Coefficients in q-expansion of E_4*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -1272, 351432, 89559456, -28689603384, -3415837464144, -155926897275744, -3967939206760128, -65540990858009400, -777517458842153496, -7105797244669716432, -52584588767807410464, -326903749149928526688, -1755591468945924647184
Offset: 0
Cf.
A013974 (E_4*E_6 = E_10),
A282287 (E_4*E_6^2), this sequence (E_4*E_6^3).
-
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]*E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282357
Coefficients in q-expansion of E_4^2*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -1032, 48312, 171162336, -6444771144, -10105554483504, -1037089473751584, -48959817978105408, -1378102838778701640, -26186640301645703016, -364779940958775418032, -3952291567255306906464, -34798629548716507265568, -257403564989318828310384
Offset: 0
Cf.
A008410 (E_4^2 = E_8),
A058550 (E_4^2*E_6 = E_14),
A282292 (E_4^2*E_6^2 = E_10^2), this sequence (E_4^2*E_6^3).
-
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^2*E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282382
Coefficients in q-expansion of E_4^6*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, 936, 134568, -173988576, -104617833048, -27210540914064, -3910401774129888, -322823174243838912, -15429983442476298840, -469709326015243815672, -9973673112569954220432, -158215072218253260221088, -1972939697011615168926432
Offset: 0
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^6*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282402
Coefficients in q-expansion of E_4^7, where E_4 is the Eisenstein series A004009.
Original entry on oeis.org
1, 1680, 1224720, 505659840, 129351117840, 21060890131680, 2160822606183360, 134717272385473920, 4957295423282269200, 119288258695393463760, 2051465861242156554720, 26894077218337493424960, 281803532524538902825920
Offset: 0
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^7 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282403
Coefficients in q-expansion of E_4^4*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -48, -392688, -67089216, 37279185936, 15066490704480, 2098369148842944, 134803101024250752, 4960096515113176080, 119289357755096403984, 2051412780505054295520, 26894040676649639982144, 281804014682888704101312
Offset: 0
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^4* E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282461
Coefficients in q-expansion of E_4^3*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -792, -197208, 180534816, 34731625896, -11282282306064, -3475192229286624, -319729598062193088, -15436589476561121880, -469831003553540798136, -9973761497118317484432, -158213220814147434639264, -1972935965978751882433248
Offset: 0
Cf.
A013974 (E_4*E_6 = E_10),
A282292 (E_4^2*E_6^2 = E_10^2), this sequence (E_4^3*E_6^3 = E_10^3).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^3* E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
Comments