cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A128338 Numbers k such that (8^k + 5^k)/13 is prime.

Original entry on oeis.org

7, 19, 167, 173, 223, 281, 21647
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Jan 21 2013

Crossrefs

Programs

  • Mathematica
    k=8; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((8^n+5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7) from Robert Price, Jan 21 2013

A128343 Numbers k such that (14^k + 5^k)/19 is prime.

Original entry on oeis.org

3, 7, 17, 79, 17477, 19319, 49549
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, May 20 2013

Crossrefs

Programs

  • Mathematica
    k=14; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((14^n+5^n)/19) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(5)-a(7) from Robert Price, May 20 2013

A128164 Least k > 2 such that (n^k - 1)/(n-1) is prime, or 0 if no such prime exists.

Original entry on oeis.org

3, 3, 0, 3, 3, 5, 3, 0, 19, 17, 3, 5, 3, 3, 0, 3, 25667, 19, 3, 3, 5, 5, 3, 0, 7, 3, 5, 5, 5, 7, 0, 3, 13, 313, 0, 13, 3, 349, 5, 3, 1319, 5, 5, 19, 7, 127, 19, 0, 3, 4229, 103, 11, 3, 17, 7, 3, 41, 3, 7, 7, 3, 5, 0, 19, 3, 19, 5, 3, 29, 3, 7, 5, 5, 3, 41, 3, 3, 5, 3, 0, 23, 5, 17, 5, 11, 7, 61, 3, 3
Offset: 2

Views

Author

Alexander Adamchuk, Feb 20 2007

Keywords

Comments

a(n) = A084740(n) for all n except n = p-1, where p is an odd prime, for which A084740(n) = 2.
All nonzero terms are odd primes.
a(n) = 0 for n = {4,9,16,25,32,36,49,64,81,100,121,125,144,...}, which are the perfect powers with exceptions of the form n^(p^m) where p>2 and (n^(p^(m+1))-1)/(n^(p^m)-1) are prime and m>=1 (in which case a(n^(p^m))=p). - Max Alekseyev, Jan 24 2009
a(n) = 3 for n in A002384, i.e., for n such that n^2 + n + 1 is prime.
a(152) > 20000. - Eric Chen, Jun 01 2015
a(n) is the least number k such that (n^k - 1)/(n-1) is a Brazilian prime, or 0 if no such Brazilian prime exists. - Bernard Schott, Apr 23 2017
These corresponding Brazilian primes are in A285642. - Bernard Schott, Aug 10 2017
a(152) = 270217, see the top PRP link. - Eric Chen, Jun 04 2018
a(184) = 16703, a(200) = 17807, a(210) = 19819, a(306) = 26407, a(311) = 36497, a(326) = 26713, a(331) = 25033; a(185) > 66337, a(269) > 63659, a(281) > 63421, and there are 48 unknown a(n) for n <= 1024. - Eric Chen, Jun 04 2018
Six more terms found: a(522)=20183, a(570)=12907, a(684)=22573, a(731)=15427, a(820)=12043, a(996)=14629. - Michael Stocker, Apr 09 2020

Examples

			a(7) = 5 because (7^5 - 1)/6 = 2801 = 11111_7 is prime and (7^k - 1)/6 = 1, 8, 57, 400 for k = 1, 2, 3, 4. - _Bernard Schott_, Apr 23 2017
		

Crossrefs

Cf. A002384, A049409, A100330, A162862, A217070-A217089. (numbers b such that (b^p-1)/(b-1) is prime for prime p = 3 to 97)
A126589 gives locations of zeros.

Programs

  • Mathematica
    Table[Function[m, If[m > 0, k = 3; While[! PrimeQ[(m^k - 1)/(m - 1)], k++]; k, 0]]@ If[Set[e, GCD @@ #[[All, -1]]] > 1, {#, IntegerExponent[n, #]} &@ Power[n, 1/e] /. {{k_, m_} /; Or[Not[PrimePowerQ@ m], Prime@ m, FactorInteger[m][[1, 1]] == 2] :> 0, {k_, m_} /; m > 1 :> n}, n] &@ FactorInteger@ n, {n, 2, 17}] (* Michael De Vlieger, Apr 24 2017 *)
  • PARI
    a052409(n) = my(k=ispower(n)); if(k, k, n>1)
    a052410(n) = if (ispower(n, , &r), r, n)
    is(n) = issquare(n) || (ispower(n) && !ispseudoprime((n^a052410(a052409(n))-1)/(n-1)))
    a(n) = if(is(n), 0, forprime(p=3, 2^16, if(ispseudoprime((n^p-1)/(n-1)), return(p)))) \\ Eric Chen, Jun 01 2015, corrected by Eric Chen, Jun 04 2018, after Charles R Greathouse IV in A052409 and Michel Marcus in A052410

Extensions

a(18) = 25667 found by Henri Lifchitz, Sep 26 2007

A086122 Primes of the form (5^k-1)/4.

Original entry on oeis.org

31, 19531, 12207031, 305175781, 177635683940025046467781066894531, 14693679385278593849609206715278070972733319459651094018859396328480215743184089660644531, 35032461608120426773093239582247903282006548546912894293926707097244777067146515037165954709053039550781
Offset: 1

Views

Author

Labos Elemer, Jul 23 2003

Keywords

Comments

Corresponding exponents k are listed in A004061. - Alexander Adamchuk, Jan 23 2007

Crossrefs

Programs

  • Mathematica
    Do[f=(5^n-1)/4;If[PrimeQ[f],Print[{n,f}]],{n,1,1000}] (* Alexander Adamchuk, Jan 23 2007 *)
    Select[(5^Range[300]-1)/4,PrimeQ] (* Harvey P. Dale, Dec 11 2016 *)

Formula

a(n) = (5^A004061(n) - 1)/4 = A003463[ A004061(n) ]. - Alexander Adamchuk, Jan 23 2007
A003464 INTERSECT A000040.

Extensions

More terms from Alexander Adamchuk, Jan 23 2007

A240765 Numbers n such that (43^n - 1)/42 is prime.

Original entry on oeis.org

5, 13, 6277, 26777, 27299, 40031, 44773, 194119
Offset: 1

Views

Author

Robert Price, Apr 12 2014

Keywords

Comments

a(8) > 10^5. - Robert Price, Apr 12 2014

Crossrefs

Programs

Extensions

a(8) from Paul Bourdelais, Aug 04 2020

A117545 Least k such that Phi(k,n), the k-th cyclotomic polynomial evaluated at n, is prime.

Original entry on oeis.org

2, 2, 1, 1, 3, 1, 5, 1, 6, 2, 9, 1, 5, 1, 3, 2, 3, 1, 19, 1, 3, 2, 5, 1, 6, 4, 3, 2, 5, 1, 7, 1, 3, 6, 21, 2, 10, 1, 6, 2, 3, 1, 5, 1, 19, 2, 10, 1, 14, 3, 6, 2, 11, 1, 6, 4, 3, 2, 3, 1, 7, 1, 5, 204, 12, 2, 6, 1, 3, 2, 3, 1, 5, 1, 3, 6, 3, 2, 5, 1, 6, 2, 5, 1, 5, 11, 7, 2, 3, 1, 6, 12, 7, 4, 7, 2, 17, 1, 3
Offset: 1

Views

Author

T. D. Noe, Mar 28 2006

Keywords

Comments

Note that a(n)=1 iff n-1 is prime because Phi(1,x)=x-1. For n<2048, we have the bound a(n)<251. However, a(2048) is greater than 10000. Is a(n) defined for all n? For fixed n, there are many sequences listing the k that make Phi(k,n) prime: A000043, A028491, A004061, A004062, A004063, A004023, A005808, A016054, A006032, A006033, A006034, A006035.

Crossrefs

Cf. A117544 (least k such that Phi(n, k) is prime).

Programs

  • Mathematica
    Table[k=1; While[ !PrimeQ[Cyclotomic[k,n]], k++ ]; k, {n,100}]

A242797 Numbers n such that (45^n - 1)/44 is prime.

Original entry on oeis.org

19, 53, 167, 3319, 11257, 34351, 216551
Offset: 1

Views

Author

Robert Price, May 22 2014

Keywords

Comments

a(7) > 10^5.
Numbers corresponding to a(4)-a(6) are probable primes.
All terms are prime.

Crossrefs

Programs

Extensions

a(7)=216551 corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020

A243279 Numbers n such that (46^n - 1)/45 is prime.

Original entry on oeis.org

2, 7, 19, 67, 211, 433, 2437, 2719, 19531
Offset: 1

Views

Author

Robert Price, Jun 02 2014

Keywords

Comments

a(10) > 10^5.
Numbers corresponding to a(7)-a(9) are probable primes.
All terms are prime.

Crossrefs

Programs

A096176 Numbers k such that (k^3-1)/(k-1) is prime.

Original entry on oeis.org

2, 3, 5, 6, 8, 12, 14, 15, 17, 20, 21, 24, 27, 33, 38, 41, 50, 54, 57, 59, 62, 66, 69, 71, 75, 77, 78, 80, 89, 90, 99, 101, 105, 110, 111, 117, 119, 131, 138, 141, 143, 147, 150, 153, 155, 161, 162, 164, 167, 168, 173, 176, 188, 189, 192, 194, 203, 206, 209, 215, 218
Offset: 1

Views

Author

Hugo Pfoertner, Jun 22 2004

Keywords

Comments

Numbers k > 1 such that k^2 + k + 1 is a prime. - Vincenzo Librandi, Nov 16 2010
Therefore essentially the same as A002384. - Georg Fischer, Oct 06 2018

Examples

			a(5) = 8 because (8^3-1)/(8-1) = 511/7 = 73 is prime.
		

Crossrefs

Cf. A096174 (n^3+1)/(n+1) is prime, A081257 largest prime factor of n^3-1, A096175 n^3-1 is an odd semiprime.
Cf. A028491, A004061. - Daniel McCandless (dkmccandless(AT)gmail.com), Aug 31 2009
Cf. A002384.

Programs

Extensions

3 and 5 added by Daniel McCandless (dkmccandless(AT)gmail.com), Aug 31 2009
Corrected terms, including many previously omitted terms, from Harvey P. Dale, Sep 10 2009

A137410 a(n) = (5^n - 3)/2.

Original entry on oeis.org

-1, 1, 11, 61, 311, 1561, 7811, 39061, 195311, 976561, 4882811, 24414061, 122070311, 610351561, 3051757811, 15258789061, 76293945311, 381469726561, 1907348632811, 9536743164061, 47683715820311, 238418579101561, 1192092895507811, 5960464477539061, 29802322387695311, 149011611938476561
Offset: 0

Views

Author

Ctibor O. Zizka, Apr 15 2008

Keywords

Comments

Sequence is a(n) = a(n;5,3,1) where a(n;A,B,r) = (A^n - B^r)/(A - B) for arbitrary integers A, B, r with A != B.
Primes of this form are sometimes of interest, examples:
A=2, B=1, r=1 gives A000225 and subsequence of primes: A001348,
A=3, B=1, r=1 gives A003462 and subsequence of primes: A028491,
A=3, B=2, r=1 gives A058481 and subsequence of primes: A014224,
A=4, B=1, r=1 gives A002450,
A=4, B=2, r=1 gives A083420,
A=4, B=2, r=2 gives A002446,
A=5, B=1, r=1 gives A003463 and subsequence of primes: A004061,
A=5, B=2, r=1 gives A037577.
Sum of n-th row of triangle of powers of 5: 1; 5 1 5; 25 5 1 5 25; 125 25 5 1 5 25 125; ... (cf. Examples). - Philippe Deléham, Feb 24 2014
Integer solutions to x^5 - (x+1)^5 -(x+2)^5 +(x+3)^5 = 5^m + 5^n (see Campbell and Zujev). - Michel Marcus, Mar 02 2016

Examples

			From _Philippe Deléham_, Feb 24 2014: (Start)
a(1) = 1;
a(2) = 5 + 1 + 5 = 11;
a(3) = 25 + 5 + 1 + 5 + 25 = 61;
a(4) = 125 + 25 + 5 + 1 + 5 + 25 + 125 = 311;
etc. (End)
		

Crossrefs

Programs

Formula

a(n) = (5^n - 3)/2.
From Colin Barker, May 01 2012: (Start)
a(n) = 6*a(n-1) - 5*a(n-2).
G.f.: (-1+7*x)/((1-x)*(1-5*x)). (End)
a(n) = 5*a(n-1) + 6, a(1) = 1. - Philippe Deléham, Feb 24 2014
From Elmo R. Oliveira, Dec 11 2023: (Start)
a(n) = A024049(n)/2 - 1 = A125831(n) - 1.
E.g.f.: (1/2)*(exp(5*x) - 3*exp(x)). (End)

Extensions

More terms from Michel Marcus, Mar 02 2016
Edited and missing term a(0) inserted by M. F. Hasler, Jul 10 2018
Previous Showing 21-30 of 39 results. Next