cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A000666 Number of symmetric relations on n nodes.

Original entry on oeis.org

1, 2, 6, 20, 90, 544, 5096, 79264, 2208612, 113743760, 10926227136, 1956363435360, 652335084592096, 405402273420996800, 470568642161119963904, 1023063423471189431054720, 4178849203082023236058229792, 32168008290073542372004082199424
Offset: 0

Views

Author

Keywords

Comments

Each node may or may not be related to itself.
Also the number of rooted graphs on n+1 nodes.
The 1-to-1 correspondence is as follows: Given a rooted graph on n+1 nodes, replace each edge joining the root node to another node with a self-loop at that node and erase the root node. The result is an undirected graph on n nodes which is the graph of the symmetric relation.
Also the number of the graphs with n nodes whereby each node is colored or not colored. A loop can be interpreted as a colored node. - Juergen Will, Oct 31 2011

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 101, 241.
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000595, A001172, A001174, A006905, A000250, A054921 (connected relations).

Programs

  • Maple
    # see Riedel link above
  • Mathematica
    Join[{1,2}, Table[CycleIndex[Join[PairGroup[SymmetricGroup[n]], Permutations[Range[n*(n-1)/2+1, n*(n+1)/2]], 2],s] /. Table[s[i]->2, {i,1,n^2-n}], {n,2,8}]] (* Geoffrey Critzer, Nov 04 2011 *)
    Table[Module[{eds,pms,leq},
    eds=Select[Tuples[Range[n],2],OrderedQ];
    pms=Map[Sort,eds/.Table[i->Part[#,i],{i,n}]]&/@Permutations[Range[n]];
    leq=Function[seq,PermutationCycles[Ordering[seq],Length]]/@pms;
    Total[Thread[Power[2,leq]]]/n!
    ],{n,0,8}] (* This is after Geoffrey Critzer's program but does not use the (deprecated) Combinatorica package. - Gus Wiseman, Jul 21 2016 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2] + 1, {i, 1, Length[v]}];
    a[n_] := a[n] = (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 17}] (* Jean-François Alcover, Nov 13 2017, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2 + 1)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000666(n): return int(sum(Fraction(1<>1)+1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 02 2024

Formula

Euler transform of A054921. - N. J. A. Sloane, Oct 25 2018
Let G_{n+1,k} be the number of rooted graphs on n+1 nodes with k edges and let G_{n+1}(x) = Sum_{k=0..n(n+1)/2} G_{n+1,k} x^k. Thus a(n) = G_{n+1}(1). Let S_n(x_1, ..., x_n) denote the cycle index for Sym_n. (cf. the link in A000142).
Compute x_1*S_n and regard it as the cycle index of a set of permutations on n+1 points and find the corresponding cycle index for the action on the n(n+1)/2 edges joining those points (the corresponding "pair group"). Finally, by replacing each x_i by 1+x^i gives G_{n+1}(x). [Harary]
Example, n=2. S_2 = (1/2)*(x_1^2+x_2), x_1*S_2 = (1/2)*(x_1^3+x_1*x_2). The pair group is (1/2)*(x_1^2+x_1*x_2) and so G_3(x) = (1/2)*((1+x)^3+(1+x)*(1+x^2)) = 1+2*x+2*x^2+x^3; set x=1 to get a(2) = 6.
a(n) ~ 2^(n*(n+1)/2)/n! [McIlroy, 1955]. - Vaclav Kotesovec, Dec 19 2016

Extensions

Description corrected by Christian G. Bower
More terms from Vladeta Jovovic, Apr 18 2000
Entry revised by N. J. A. Sloane, Mar 06 2007

A000595 Number of binary relations on n unlabeled points.

Original entry on oeis.org

1, 2, 10, 104, 3044, 291968, 96928992, 112282908928, 458297100061728, 6666621572153927936, 349390545493499839161856, 66603421985078180758538636288, 46557456482586989066031126651104256, 120168591267113007604119117625289606148096, 1152050155760474157553893461743236772303142428672
Offset: 0

Views

Author

Keywords

Comments

Number of orbits under the action of permutation group S(n) on n X n {0,1} matrices. The action is defined by f.M(i,j)=M(f(i),f(j)).
Equivalently, the number of digraphs on n unlabeled nodes with loops allowed but no more than one arc with the same start and end node. - Andrew Howroyd, Oct 22 2017

Examples

			From _Gus Wiseman_, Jun 17 2019: (Start)
Non-isomorphic representatives of the a(2) = 10 relations:
  {}
  {1->1}
  {1->2}
  {1->1, 1->2}
  {1->1, 2->1}
  {1->1, 2->2}
  {1->2, 2->1}
  {1->1, 1->2, 2->1}
  {1->1, 1->2, 2->2}
  {1->1, 1->2, 2->1, 2->2}
(End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 76 (2.2.30)
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    NSeq := function ( n ) return Sum(List(ConjugacyClasses(SymmetricGroup(n)), c -> (2^Length(Orbits(Group(Representative(c)), CartesianProduct([1..n],[1..n]), OnTuples))) * Size(c)))/Factorial(n); end; # Dan Hoey, May 04 2001
    
  • Mathematica
    Join[{1,2}, Table[CycleIndex[Join[PairGroup[SymmetricGroup[n],Ordered], Permutations[Range[n^2-n+1,n^2]],2],s] /. Table[s[i]->2, {i,1,n^2-n}], {n,2,7}]] (* Geoffrey Critzer, Nov 02 2011 *)
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v];
    a[n_] := (s=0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
    dinorm[m_]:=If[m=={},{},If[Union@@m!=Range[Max@@Flatten[m]],dinorm[m/.Apply[Rule,Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}],{1}]],First[Sort[dinorm[m,1]]]]];
    dinorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#1>=aft&]}]},Union@@(dinorm[#1,aft+1]&)/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0}],{par,First/@Position[mx,Max[mx]]}]]]];
    Table[Length[Union[dinorm/@Subsets[Tuples[Range[n],2]]]],{n,0,3}] (* Gus Wiseman, Jun 17 2019 *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i])}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import product
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000595(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 02 2024

Formula

a(n) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...] / (1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = 2^sum {i, j>=1} (gcd(i, j)*s_i*s_j). - Christian G. Bower, Jan 05 2004
a(n) ~ 2^(n^2)/n! [McIlroy, 1955]. - Vaclav Kotesovec, Dec 19 2016

Extensions

More terms from Vladeta Jovovic, Feb 07 2000
Still more terms from Dan Hoey, May 04 2001

A063841 Table T(n,k) giving number of k-multigraphs on n nodes (n >= 1, k >= 0) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 11, 1, 1, 5, 20, 66, 34, 1, 1, 6, 35, 276, 792, 156, 1, 1, 7, 56, 900, 10688, 25506, 1044, 1, 1, 8, 84, 2451, 90005, 1601952, 2302938, 12346, 1, 1, 9, 120, 5831, 533358, 43571400, 892341888, 591901884, 274668, 1
Offset: 1

Views

Author

N. J. A. Sloane, Aug 25 2001

Keywords

Comments

The first five rows admit the g.f. 1/(1-x), 1/(1-x)^2, 1/(1-x)^4 and those given in A063842, A063843. Is it known that the n-th row admits a rational g.f. with denominator (1-x)^A000124(n)? - M. F. Hasler, Jan 19 2012
T(n+1,k-1) is the number of unoriented ways to color the edges of a regular n-dimensional simplex using up to k colors. - Robert A. Russell, Aug 21 2019

Examples

			Table begins
===========================================================
n\k| 0    1       2         3           4             5
---|-------------------------------------------------------
1  | 1    1       1         1           1             1 ...
2  | 1    2       3         4           5             6 ...
3  | 1    4      10        20          35            56 ...
4  | 1   11      66       276         900          2451 ...
5  | 1   34     792     10688       90005        533358 ...
6  | 1  156   25506   1601952    43571400     661452084 ...
7  | 1 1044 2302938 892341888 95277592625 4364646955812 ...
...
T(3,2)=10 because there are 10 unlabeled graphs with 3 nodes with at most 2 edges connecting any pair.
(. . .),(.-. .),(.-.-.),(.-.-.-),(.=. .),(.=.=.),(.=.=.=),(.-.=.),(.-.-.=),(.=.=.-). - _Geoffrey Critzer_, Jan 23 2012
		

Crossrefs

Rows (4th and 5th) are listed in A063842, A063843.
Cf. A327084 (unoriented simplex edge colorings).

Programs

  • Mathematica
    (* This code gives the array T(n,k). *) Needs["Combinatorica`"]; Transpose[Table[Table[PairGroupIndex[SymmetricGroup[n],s]/.Table[s[i]->k+1, {i,0,Binomial[n,2]}], {n,1,7}], {k,0,6}]]//Grid (* Geoffrey Critzer, Jan 23 2012 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    T[n_, k_] := (s=0; Do[s += permcount[p]*(k+1)^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Table[T[n-k, k], {n, 1, 10}, {k, n-1, 0, -1}] // Flatten (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    T(n, k) = {my(s=0); forpart(p=n, s+=permcount(p)*(k+1)^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A063841_T(n,k): return int(sum(Fraction((k+1)**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024

Formula

T(n,k) = A327084(n-1,k+1) for n > 1. - Robert A. Russell, Aug 21 2019

Extensions

More terms from Vladeta Jovovic, Sep 03 2001

A004105 Number of point-self-dual nets with 2n nodes. Also number of directed 2-multigraphs with loops on n nodes.

Original entry on oeis.org

1, 3, 45, 3411, 1809459, 7071729867, 208517974495911, 47481903377454219975, 85161307642554753639601848, 1221965550839348597865127102714827, 142024245093355901785105779901319683262778, 135056692539998733060710198802224149631056479068139
Offset: 0

Views

Author

Keywords

Comments

A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).
Also nonisomorphic relations on 3-state logic.

References

  • F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Prepend[Table[CycleIndex[Join[PairGroup[SymmetricGroup[n],Ordered], Permutations[Range[n^2-n+1,n^2]],2],s]/.Table[s[i]->3,{i,1,n^2-n}],{n,2,7}],1] (* Geoffrey Critzer, Oct 20 2012 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v];
    a[n_] := (s=0; Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Array[a, 15, 0] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i])}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A004105(n): return int(sum(Fraction(3**((sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))<<1)+sum(q*r**2 for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 10 2024

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/ (1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = 3^Sum_{i, j>=1} (gcd(i,j)*s_i*s_j).

Extensions

More terms from Vladeta Jovovic, Jan 14 2000
Formula from Christian G. Bower, Jan 06 2004

A004103 Number of nets on n unlabeled nodes.

Original entry on oeis.org

1, 2, 9, 56, 705, 19548, 1419237, 278474976, 148192635483, 213558945249402, 836556995284293897, 8962975658381123937708, 264404516190234685662666051, 21610417954162750247842392794292, 4921335335427778307286708119839406529, 3138313838161414849743136458064895837170596
Offset: 0

Views

Author

Keywords

Comments

A net in this context is a graph with both signed vertices and signed edges. - Andrew Howroyd, Sep 25 2018

References

  • F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A004102 (signed edges only), A000666 (signed vertices only).
Cf. A004107.

Programs

  • Mathematica
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p]*2^Length[p], {p, IntegerPartitions[n]}]; s/n!];
    Array[a, 16, 0] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)*2^#p); s/n!} \\ Andrew Howroyd, Sep 25 2018
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A004103(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items()))<Chai Wah Wu, Jul 09 2024

Extensions

a(0)=1 prepended and a(13)-a(14) added by Andrew Howroyd, Sep 25 2018

A004104 Number of self-dual signed graphs with n nodes. Also number of self-complementary 2-multigraphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 20, 86, 662, 8120, 171526, 5909259, 348089533, 33883250874, 5476590066777, 1490141905609371, 666003784522738152, 509204473666338077658, 636051958071749028811326, 1375164117171886868027357906, 4844133410739656724629165903483, 29777568550007746192195431057341474
Offset: 1

Views

Author

Keywords

Comments

A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).
Of a(1) through a(22) only a(3) = 2 is prime. - Jonathan Vos Post, Feb 19 2011

References

  • F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[If[Mod[v[[i]]*v[[j]], 2] == 0, GCD[v[[i]], v[[j]]], 0], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[If[Mod[v[[i]], 2] == 0, Quotient[v[[i]], 4]*2, 0], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 27 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i],v[j])))) + sum(i=1, #v, if(v[i]%2==0, v[i]\4*2))}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 16 2018
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A004104(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2) if not (r&1 and s&1))+sum(((q>>1)&-2)*r+(q*r*(r-1)>>1) for q, r in p.items() if q&1^1)),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024

Extensions

More terms from Vladeta Jovovic, Jan 19 2000
a(18)-a(20) added by Andrew Howroyd, Sep 16 2018

A053400 Number of 3-multigraphs on n nodes.

Original entry on oeis.org

1, 4, 20, 276, 10688, 1601952, 892341888, 1799786093088, 13042490003160192, 341378170022783017472, 32526326484972756063585792, 11367103329997359707194173746176, 14669222110846093400698801891700529152
Offset: 1

Views

Author

Vladeta Jovovic, Jan 06 2000

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY,1973.

Crossrefs

Column k=3 of A063841.
Cf. A004102.

Programs

  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A053400(n): return int(sum(Fraction(1<<(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())<<1),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024

A053465 Number of connected 2-multigraphs on n nodes.

Original entry on oeis.org

1, 1, 2, 7, 53, 712, 24576, 2275616, 589543159, 420188096140, 819411181635025, 4381819315336997184, 64583749250393921183423, 2638507778912832094660037006, 300397569392490080058575760090548, 95776592061550107555640978862165082446
Offset: 0

Views

Author

Vladeta Jovovic, Jan 13 2000

Keywords

Comments

A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).
Also the number of connected signed graphs on n unlabeled nodes. - Andrew Howroyd, Sep 25 2018

Crossrefs

Programs

  • Mathematica
    A004102 = Import["https://oeis.org/A004102/b004102.txt", "Table"][[All, 2]];
    (* EulerInvTransform is defined in A022562 *)
    Join[{1}, EulerInvTransform[A004102 // Rest]] (* Jean-François Alcover, Sep 12 2019, after Andrew Howroyd, updated Mar 17 2020 *)

Formula

Inverse Euler transform of A004102. - Andrew Howroyd, Sep 25 2018

Extensions

a(0)=1 prepended and terms a(15) and beyond from Andrew Howroyd, Sep 25 2018

A053588 Number of self-complementary 4-multigraphs on n nodes.

Original entry on oeis.org

1, 1, 3, 16, 121, 1480, 50993, 3279685, 505641590, 152461906778, 103587671805408, 145528904385412088, 442626996609870050404, 2918362542591139744394993, 40446812392580562094804791143, 1260273961234324967695235253182680, 80686628450087709982052029871655471264
Offset: 1

Views

Author

Vladeta Jovovic, Jan 19 2000

Keywords

References

  • V. Jovovic, On the number of m-place relations (in Russian), Logiko-algebraicheskie konstruktsii, Tver, 1992, 59-66.
  • J. Xu, Ch. R. Wang, J. F. Wang, The theory of self-complementary k-multigraphs (in Chinese), Pure Appl. Math. [Chuncui Shuxue yu Yingyong Shuxue] 10 (1994), Special Issue, 18-22.

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, t, i, k = 0}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[If[EvenQ[v[[i]]*v[[j]]], GCD[v[[i]], v[[j]]], 0], {i, 2, Length[v]}, {j, 1, i - 1}] + Sum[If[EvenQ[v[[i]]], 2 Quotient[v[[i]], 4], 0], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*5^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    a /@ Range[1, 20] (* Jean-François Alcover, Sep 22 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i], v[j])))) + sum(i=1, #v, if(v[i]%2==0, v[i]\4*2))}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*5^edges(p)); s/n!} \\ Andrew Howroyd, Sep 17 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Sep 17 2018

A004106 Number of line-self-dual nets (or edge-self-dual nets) with n nodes.

Original entry on oeis.org

1, 2, 3, 8, 29, 148, 1043, 11984, 229027, 6997682, 366204347, 30394774084, 4363985982959, 994090870519508, 393850452332173999, 249278602955869472540, 275042591834324901085904, 488860279973733024992540668, 1514493725905920009795681408275
Offset: 0

Views

Author

Keywords

Comments

A net in this context is a graph with both signed vertices and signed edges. A net is line-self-dual if changing the signs on all edges leaves the graph unchanged up to isomorphism. - Andrew Howroyd, Sep 25 2018

References

  • F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[If[Mod[v[[i]] v[[j]], 2] == 0, GCD[v[[i]], v[[j]]], 0], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[If[Mod[v[[i]], 2] == 0, 2 Quotient[v[[i]], 4], 0], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p]*2^Length[p], {p, IntegerPartitions[n]}]; s/n!];
    Array[a, 19, 0] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i], v[j])))) + sum(i=1, #v, if(v[i]%2==0, v[i]\4*2))}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)*2^#p); s/n!} \\ Andrew Howroyd, Sep 25 2018
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A004106(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2) if not (r&1 and s&1))+sum(((q>>1)&-2)*r+(q*r*(r-1)>>1) for q, r in p.items() if q&1^1))<Chai Wah Wu, Jul 10 2024

Extensions

a(0)=1 prepended and a(17)-a(18) added by Andrew Howroyd, Sep 25 2018
Showing 1-10 of 19 results. Next