cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 87 results. Next

A294629 Partial sums of A294628.

Original entry on oeis.org

4, 16, 28, 56, 68, 120, 132, 192, 228, 296, 308, 440, 452, 536, 612, 736, 748, 920, 932, 1112, 1204, 1320, 1332, 1624, 1676, 1808, 1916, 2144, 2156, 2496, 2508, 2760, 2884, 3048, 3156, 3600, 3612, 3792, 3932, 4336, 4348, 4784, 4796, 5120, 5388, 5600, 5612, 6224, 6292, 6640, 6812, 7184, 7196, 7728, 7868, 8384
Offset: 1

Views

Author

Omar E. Pol, Nov 05 2017

Keywords

Comments

a(n) is also the volume (and the number of cubes) in the n-th level (starting from the top) of the stepped pyramid described in A294630.
Number of terms less than 10^k, k=1,2,3,...: 1, 5, 19, 61, 195, 623, 1967, 6225, ... - Muniru A Asiru, Mar 04 2018

Examples

			Illustration of initial terms (n = 1..6):
.                                                  _ _ _ _ _ _
.                                _ _ _ _         _|     |     |_
.                _ _ _ _       _|   |   |_      |       |       |
.      _ _      |   |   |     |    _|_    |     |      _|_      |
.     |_|_|     |_ _|_ _|     |_ _|   |_ _|     |_ _ _|   |_ _ _|
.     |_|_|     |   |   |     |   |_ _|   |     |     |_ _|     |
.               |_ _|_ _|     |_    |    _|     |       |       |
.       4                       |_ _|_ _|       |_      |      _|
.                  16                             |_ _ _|_ _ _|
.                                  28
.                                                      56
.
.                                        _ _ _ _ _ _ _ _
.             _ _ _ _ _ _              _|       |       |_
.            |     |     |           _|         |         |_
.         _ _|     |     |_ _       |           |           |
.        |      _ _|_ _      |      |          _|_          |
.        |     |       |     |      |        _|   |_        |
.        |_ _ _|       |_ _ _|      |_ _ _ _|       |_ _ _ _|
.        |     |       |     |      |       |_     _|       |
.        |     |_ _ _ _|     |      |         |_ _|         |
.        |_ _      |      _ _|      |           |           |
.            |     |     |          |_          |          _|
.            |_ _ _|_ _ _|            |_        |        _|
.                                       |_ _ _ _|_ _ _ _|
.                 68
.                                              120
.
Note that for n >= 2 the structure has a hole (or hollow) in the center.
a(n) is the number of ON cells in the n-th diagram.
		

Crossrefs

For other related diagrams see A294630 (partial sums), A294016 and A237593.

Programs

  • GAP
    List([1..1000],n->Sum([1..n],k->8*(Sigma(k)-k+(1/2)))); # Muniru A Asiru, Mar 04 2018
    
  • Maple
    with(numtheory): seq(sum(8*(sigma(k)-k+(1/2)),k=1..n),n=1..1000); # Muniru A Asiru, Mar 04 2018
  • Mathematica
    f[n_] := 8 (DivisorSigma[1, n] - n) + 4; Accumulate@Array[f, 56] (* Robert G. Wilson v, Dec 12 2017 *)
  • PARI
    a(n) = 4*(sum(k=1, n, n\k*k) - sum(k=2, n, n%k)) \\ Iain Fox, Dec 10 2017
    
  • PARI
    first(n) = my(res = vector(n)); res[1] = 4; for(x=2, n, res[x] = res[x-1] + 8*(sigma(x) - x + (1/2))); res; \\ Iain Fox, Dec 10 2017
    
  • Python
    from math import isqrt
    def A294629(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))-n**2<<2 # Chai Wah Wu, Oct 22 2023

Formula

a(n) = 4*A294016(n).
a(n) = A016742(n) - 8*A004125(n).
a(n) = A016742(n) - 4*A067436(n).
a(n) = A243980(n) - 4*A004125(n).
a(n) = A243980(n) - 2*A067436(n).

A294630 Partial sums of A294629.

Original entry on oeis.org

4, 20, 48, 104, 172, 292, 424, 616, 844, 1140, 1448, 1888, 2340, 2876, 3488, 4224, 4972, 5892, 6824, 7936, 9140, 10460, 11792, 13416, 15092, 16900, 18816, 20960, 23116, 25612, 28120, 30880, 33764, 36812, 39968, 43568, 47180, 50972, 54904, 59240, 63588, 68372, 73168, 78288, 83676, 89276, 94888, 101112
Offset: 1

Views

Author

Omar E. Pol, Nov 05 2017

Keywords

Comments

a(n) is also the volume of a stepped pyramid with n levels which is another version of the stepped pyramid described in A244050. Both pyramids have the same top view and the same front view, that is to say externally both pyramids are equal, but this pyramid with n levels contains a central chamber whose volume is 4*A072481(n). For more information about the central chamber see the diagrams in A294629.
a(n) is the number of unit cubes of the pyramid with n levels.

Examples

			Illustration of the top view of the pyramid with 16 levels and 4224 unit cubes:
.                 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.                |  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.             _ _| |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  | |_ _
.           _|  _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _  |_
.         _|  _|  _| |  _ _ _ _ _ _ _ _ _ _ _ _  | |_  |_  |_
.        |  _|   |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _|   |_  |
.   _ _ _| |  _ _|     |  _ _ _ _ _ _ _ _ _ _  |     |_ _  | |_ _ _
.  |  _ _ _|_| |      _| |_ _ _ _ _ _ _ _ _ _| |_      | |_|_ _ _  |
.  | | |  _ _ _|    _|_ _|  _ _ _ _ _ _ _ _  |_ _|_    |_ _ _  | | |
.  | | | | |  _ _ _| |  _| |_ _ _ _ _ _ _ _| |_  | |_ _ _  | | | | |
.  | | | | | | |  _ _|_|  _|  _ _ _ _ _ _  |_  |_|_ _  | | | | | | |
.  | | | | | | | | |  _ _|   |_ _ _ _ _ _|   |_ _  | | | | | | | | |
.  | | | | | | | | | | |  _ _|  _ _ _ _  |_ _  | | | | | | | | | | |
.  | | | | | | | | | | | | |  _|_ _ _ _|_  | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | |  _ _  | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |   | | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
.  | | | | | | | | | | | |_|_  |_ _ _ _|  _|_| | | | | | | | | | | |
.  | | | | | | | | | |_|_    |_ _ _ _ _ _|    _|_| | | | | | | | | |
.  | | | | | | | |_|_ _  |_  |_ _ _ _ _ _|  _|  _ _|_| | | | | | | |
.  | | | | | |_|_ _  | |_  |_ _ _ _ _ _ _ _|  _| |  _ _|_| | | | | |
.  | | | |_|_ _    |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_|    _ _|_| | | |
.  | |_|_ _ _  |     |_  |_ _ _ _ _ _ _ _ _ _|  _|     |  _ _ _|_| |
.  |_ _ _  | |_|_      | |_ _ _ _ _ _ _ _ _ _| |      _|_| |  _ _ _|
.        | |_    |_ _  |_ _ _ _ _ _ _ _ _ _ _ _|  _ _|    _| |
.        |_  |_  |_  | |_ _ _ _ _ _ _ _ _ _ _ _| |  _|  _|  _|
.          |_  |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|  _|
.            |_ _  | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |  _ _|
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the above diagram contains a hidden pattern, simpler, which emerges from the front view of every corner of the stepped pyramid. For more information about the hidden pattern see A237593 and A245092.
		

Crossrefs

Programs

  • GAP
    List([1..50],n->Sum([1..n],m->Sum([1..m],k->8*(Sigma(k)-k+(1/2))))); # Muniru A Asiru, Mar 04 2018
    
  • Maple
    with(numtheory): seq(sum(sum(8*(sigma(j)-j+(1/2)),j=1..k),k=1..n),n=1..50); # Muniru A Asiru, Mar 04 2018
  • Mathematica
    f[n_] := 8 (DivisorSigma[1, n] - n) + 4; Accumulate@ Accumulate@ Array[f, 48] (* Robert G. Wilson v, Dec 12 2017 *)
  • Python
    from math import isqrt
    def A294630(n): return ((((s:=isqrt(n))**2*(s+1)*((s+1)*((s<<1)+1)-6*(n+1))>>1) + sum((q:=n//k)*(-k*(q+1)*(3*k+(q<<1)+1)+3*(n+1)*((k<<1)+q+1)) for k in range(1, s+1))<<2)-(n*(n+1)*((n<<1)+1)<<1))//3 # Chai Wah Wu, Nov 01 2023

Formula

a(n) = 4*A294017(n).
a(n) = A002492(n) - 8*A072481(n).
a(n) = A244050(n) - 4*A072481(n).

A354238 Decimal expansion of 1 - Pi^2/12.

Original entry on oeis.org

1, 7, 7, 5, 3, 2, 9, 6, 6, 5, 7, 5, 8, 8, 6, 7, 8, 1, 7, 6, 3, 7, 9, 2, 4, 1, 6, 6, 7, 6, 9, 8, 7, 4, 0, 5, 3, 9, 0, 5, 2, 5, 0, 4, 9, 3, 9, 6, 6, 0, 0, 7, 8, 1, 1, 3, 2, 2, 2, 0, 8, 8, 5, 3, 1, 4, 9, 9, 6, 2, 6, 4, 7, 9, 8, 3, 9, 9, 5, 6, 3, 0, 8, 3, 1, 8, 5, 5, 4, 9, 6, 9, 0, 1, 2, 0, 6, 4, 7, 3, 4, 7, 9, 9, 7
Offset: 0

Views

Author

Omar E. Pol, May 20 2022

Keywords

Comments

Ratio of area between the polygon that is adjacent in the same plane to the base of the stepped pyramid with an infinite number of levels described in A245092 and the circumscribed square (see the first formula).

Examples

			0.177532966575886781763792416676987405390525049396600781132220885314996264798...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013.

Crossrefs

Programs

  • Mathematica
    RealDigits[1 - Pi^2/12, 10, 100][[1]] (* Amiram Eldar, May 20 2022 *)
  • PARI
    1-Pi^2/12
    
  • PARI
    1-zeta(2)/2

Formula

Equals lim_{n->infinity} A004125(n)/(n^2).
Equals 1 - A013661/2.
Equals 1 - A072691.
Equals A152416/2.
Equals Sum_{k>=1} 1/(2*k*(k+1)^2). - Amiram Eldar, May 20 2022
Equals -1/4 + Sum_{k>=2} (-1)^k * k * (k - Sum_{i=2..k} zeta(i)) (Furdui, 2013 problem). - Amiram Eldar, Jun 09 2022
Equals Integral_{x>=1} {x}/x^3 dx where {.} is the fractional part. [Nahin]. R. J. Mathar, May 22 2024
From Amiram Eldar, Jul 31 2025: (Start)
Equals Integral_{x=0..1} {1/x} * x dx (Furdui, 2013 book, section 2.21, page 103).
Equals Integral_{x=0..1} Integral_{y=0..1} {x/y}*{y/x} dx dy, where {} denotes fractional part (Furdui, 2008 and 2013 book, section 2.36, page 105). (End)

A161517 Sum of remainders of c mod k where k = 1, 2, 3, ..., c and c is the n-th composite number.

Original entry on oeis.org

1, 3, 8, 12, 13, 17, 31, 36, 36, 47, 61, 70, 77, 85, 103, 112, 125, 124, 138, 167, 184, 197, 218, 198, 248, 269, 258, 284, 328, 339, 358, 374, 414, 420, 449, 454, 492, 529, 520, 553, 578, 586, 672, 693, 693, 738, 725, 799, 840, 835, 852, 956, 981, 992, 1049, 1036
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 12 2009

Keywords

Examples

			a(1) = 1 (= (4 mod 3) + 0);
a(2) = 3 (= (6 mod 5) + (6 mod 4) + 0 + 0);
a(3) = 8 (= (8 mod 7) + (8 mod 6) + (8 mod 5) + 0 + (8 mod 3) + 0), etc.
		

Crossrefs

Programs

  • Maple
    A002808 := proc(n) local a; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) ; end if; end do; end if; end proc: A004125 := proc(n) add( n mod k, k=1..n) ; end: A161517 := proc(n) local c; A004125( A002808(n)) ; end: seq(A161517(n),n=1..80) ; # R. J. Mathar, Aug 03 2009
  • Mathematica
    With[{cmps=Select[Range[200],CompositeQ]},Table[Total[Mod[n,Range[n-1]]],{n,cmps}]] (* Harvey P. Dale, Apr 09 2023 *)
  • PARI
    a(n)=my(c=n+n\log(n+1));for(i=0,n-c+primepi(c),if(isprime(c++),i--));sum(k=2,c,c%k) \\ Charles R Greathouse IV, Oct 12 2009

Formula

a(n) = (c mod (c-1)) + (c mod (c-2)) + ... + (c mod 3) + (c mod 2).

Extensions

Corrected and extended by R. J. Mathar, Aug 03 2009

A163180 a(n) = tau(n) + Sum_{k=1..n} (n mod k).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 12, 15, 17, 24, 23, 30, 35, 40, 41, 53, 53, 66, 67, 74, 81, 100, 93, 106, 116, 129, 130, 153, 146, 169, 173, 188, 201, 222, 207, 235, 252, 273, 266, 299, 292, 327, 334, 345, 362, 405, 384, 417, 426, 453, 460, 507, 500, 533, 528, 557, 582, 637, 598, 647
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 22 2009

Keywords

Comments

Number of divisors of n plus the sum of all the remainders modulo the numbers below n.

Examples

			a(1) = 1 + 0 = 1;
a(2) = 2 + 0 = 2;
a(3) = 2 + 1 = 3;
a(4) = 3 + 1 = 4;
a(5) = 2 + 4 = 6.
		

Crossrefs

Programs

  • Maple
    A004125 := proc(n) add( modp(n,k),k=2..n) ; end: A163180 := proc(n) numtheory[tau](n)+A004125(n) ; end: seq(A163180(n),n=1..80) ; # R. J. Mathar, Jul 27 2009
  • Mathematica
    Table[DivisorSigma[0,n]+Sum[Mod[n,k],{k,n}],{n,70}] (* Harvey P. Dale, Feb 11 2015 *)
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A163180(n): return divisor_count(n)+n**2+((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 22 2023

Formula

a(n) = A000005(n) + A004125(n).

Extensions

169 inserted by R. J. Mathar, Jul 27 2009

A173392 Product of nonzero remainders of n mod k, for k = 1,2,3,...,n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 12, 24, 48, 720, 240, 2160, 23040, 45360, 40320, 2419200, 1935360, 65318400, 69672960, 163296000, 2786918400, 754427520000, 22992076800, 201180672000, 14714929152000, 211843247616000, 114776447385600, 32953394073600000, 2410305395097600
Offset: 1

Views

Author

Jaroslav Krizek, Nov 22 2010

Keywords

Examples

			For n = 7; 7 mod k, for k = 1,2,3,...,7: (0,1,1,3,2,1,0). Product of nonzero remainders = 6. a(7) = 6.
		

Crossrefs

Cf. A004125 (sum of remainders of n mod k).

Programs

  • Mathematica
    Table[Times@@DeleteCases[Mod[n, Range[n]], 0], {n, 30}]
  • PARI
    a(n) = prod(k=1, n, if (m = n % k, m, 1)); \\ Michel Marcus, May 23 2018

Extensions

Extended by T. D. Noe, Nov 22 2010

A180492 Product of remainders of prime(n) mod k, for k = 2,3,4,...,prime(n)-1.

Original entry on oeis.org

1, 1, 2, 6, 720, 2160, 2419200, 65318400, 754427520000, 32953394073600000, 311409573995520000, 37269497815783833600000, 7890485108998805913600000000, 1096106738916569123487744000000, 4067286739206415827555188736000000000, 7924734685010508814047938347008000000000000
Offset: 1

Views

Author

Carl R. White, Sep 08 2010

Keywords

Comments

Nonzero entries in A180491. Note that this sequence, while increasing in general, is not strictly increasing.
a(n) is divisible by (n-1)!. - Robert G. Wilson v, Sep 09 2010

Examples

			Since prime(4) = 7, a(4) = (7 mod 2) * (7 mod 3) * (7 mod 4) * (7 mod 5) * (7 mod 6) = 1 * 1 * 3 * 2 * 1 = 6.
		

Crossrefs

Programs

  • Maple
    a:= n-> (p-> mul(irem(p, k), k=2..p-1))(ithprime(n)):
    seq(a(n), n=1..17);  # Alois P. Heinz, Jul 16 2022
  • Mathematica
    f[n_]:=Times@@(Mod[n,# ]&/@ Range[2,n-1]); Table[f[Prime[i]],{i,20}] (* Harvey P. Dale, Sep 18 2010 *)
    f[n_] := Times @@ Mod[n, Range[2, n - 1]]; Table[ f@ Prime@ n, {n, 10}] (* Robert G. Wilson v, Sep 09 2010 *)

Formula

a(n) = A173392(A000040(n)) = A180491(A000040(n)). - Ridouane Oudra, Nov 01 2024

A180493 Numbers n such that prime(n)! is divisible by A180491(prime(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 29, 30, 35, 38, 39, 40, 53
Offset: 1

Views

Author

Carl R. White, Sep 08 2010

Keywords

Comments

Also numbers n such that prime(n)! is divisible by A180492(n).
Is this sequence finite?
From Robert G. Wilson v, Sep 09 2010: (Start)
Checked to 10000 for more terms.
Conjecture: This sequence is finite and all its terms are present. (End)

Crossrefs

Programs

  • Mathematica
    f[n_] := Times @@ Mod[n, Range[2, n - 1]]; k = 1; lst = {}; While[k < 10001, If[ Divisible[ Prime@k!, f@Prime@k], AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Sep 09 2010 *)

A233131 Sum of remainders of n modulo all smaller composite numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 4, 2, 5, 9, 14, 9, 15, 21, 28, 24, 33, 27, 37, 33, 44, 56, 69, 52, 66, 81, 88, 87, 105, 92, 111, 102, 122, 143, 165, 139, 163, 187, 212, 196, 223, 209, 237, 239, 244, 274, 305, 266, 298, 296, 330, 335, 371, 347, 384, 368, 407, 447, 488, 432, 474, 516, 529, 513, 558, 543, 590, 599, 647, 637, 687, 620
Offset: 0

Views

Author

Max Alekseyev, Dec 07 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Mod[n,Select[Range[n-1],CompositeQ]]],{n,0,80}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 01 2018 *)

Formula

a(n) = A004125(n) - A024934(n).

A283565 Numbers n such that n = Sum_{k=1..m} (n mod k) for some m.

Original entry on oeis.org

0, 1, 2, 7, 8, 9, 10, 13, 15, 19, 22, 23, 25, 31, 37, 49, 51, 52, 57, 72, 95, 98, 100, 133, 140, 146, 152, 158, 168, 189, 196, 212, 315, 348, 376, 383, 396, 407, 416, 451, 452, 497, 521, 541, 548, 551, 568, 583, 586, 592, 593, 657, 663, 683, 729, 780, 784, 794
Offset: 1

Views

Author

Rémy Sigrist, Mar 11 2017

Keywords

Comments

A283593 gives the least m > 0 as described in the name.
Numbers t such that t and 2*t are both in this sequence are 0, 1, 49, 98, 1249, 2599, 3784, 9565, 10933, ... - Altug Alkan, Mar 11 2017

Examples

			(7 mod 1) + (7 mod 2) + (7 mod 3) + (7 mod 4) + (7 mod 5) = 0 + 1 + 1 + 3 + 2 = 7, hence 7 appears in this sequence.
(4 mod 1) + (4 mod 2) + (4 mod 3) + (4 mod 4) = 0 + 0 + 1 + 0 = 1, and (4 mod 1) + (4 mod 2) + (4 mod 3) + (4 mod 4) + (4 mod 5) = 0 + 0 + 1 + 0 + 4 = 5, hence 4 does not appear in this sequence.
		

Crossrefs

Programs

  • PARI
    isok(n) = my (s=0); my (k=1); while (s
    				
Previous Showing 61-70 of 87 results. Next