cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A292741 Number A(n,k) of partitions of n with k sorts of part 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 2, 1, 4, 10, 11, 5, 2, 1, 5, 17, 31, 24, 7, 4, 1, 6, 26, 69, 95, 50, 11, 4, 1, 7, 37, 131, 278, 287, 104, 15, 7, 1, 8, 50, 223, 657, 1114, 865, 212, 22, 8, 1, 9, 65, 351, 1340, 3287, 4460, 2599, 431, 30, 12, 1, 10, 82, 521, 2459, 8042, 16439, 17844, 7804, 870, 42, 14
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2017

Keywords

Examples

			A(1,3) = 3: 1a, 1b, 1c.
A(2,3) = 10: 2, 1a1a, 1a1b, 1a1c, 1b1a, 1b1b, 1b1c, 1c1a, 1c1b, 1c1c.
A(3,2) = 11: 3, 21a, 21b, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b.
Square array A(n,k) begins:
  1,  1,   1,    1,     1,     1,      1,      1, ...
  0,  1,   2,    3,     4,     5,      6,      7, ...
  1,  2,   5,   10,    17,    26,     37,     50, ...
  1,  3,  11,   31,    69,   131,    223,    351, ...
  2,  5,  24,   95,   278,   657,   1340,   2459, ...
  2,  7,  50,  287,  1114,  3287,   8042,  17215, ...
  4, 11, 104,  865,  4460, 16439,  48256, 120509, ...
  4, 15, 212, 2599, 17844, 82199, 289540, 843567, ...
		

Crossrefs

Columns k=0-2 give: A002865, A000041, A090764.
Rows n=0-2 give: A000012, A001477, A002522, A071568.
Main diagonal gives A292462.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2, k^n,
          add(b(n-i*j, i-1, k), j=0..iquo(n, i)))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[0, , ] = 1; b[n_, i_, k_] := b[n, i, k] = If[i < 2, k^n, Sum[b[n - i*j, i - 1, k], {j, 0, Quotient[n, i]}]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 19 2018, translated from Maple *)

Formula

G.f. of column k: 1/(1-k*x) * 1/Product_{j>=2} (1-x^j).
A(n,k) = Sum_{j=0..n} A002865(j) * k^(n-j).

A344499 T(n, k) = F(n - k, k), where F(n, x) is the Fubini polynomial. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 10, 3, 1, 0, 75, 74, 21, 4, 1, 0, 541, 730, 219, 36, 5, 1, 0, 4683, 9002, 3045, 484, 55, 6, 1, 0, 47293, 133210, 52923, 8676, 905, 78, 7, 1, 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1, 0, 7087261, 45375130, 26857659, 5227236, 544505, 39390, 2359, 136, 9, 1
Offset: 0

Views

Author

Peter Luschny, May 21 2021

Keywords

Comments

The array rows are recursively generated by applying the Akiyama-Tanigawa algorithm to the powers (see the Python implementation below). In this way the array becomes the image of A004248 under the AT-transformation when applied to the columns of A004248. This makes the array closely linked to A371761, which is generated in the same way, but applied to the rows of A004248. - Peter Luschny, Apr 27 2024

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,      1;
[3] 0, 3,      2,       1;
[4] 0, 13,     10,      3,       1;
[5] 0, 75,     74,      21,      4,      1;
[6] 0, 541,    730,     219,     36,     5,     1;
[7] 0, 4683,   9002,    3045,    484,    55,    6,    1;
[8] 0, 47293,  133210,  52923,   8676,   905,   78,   7,   1;
[9] 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1;
.
Seen as an array A(n, k) = T(n + k, n):
[0] [1, 0,   0,    0,     0,       0,         0, ...  A000007
[1] [1, 1,   3,   13,    75,     541,      4683, ...  A000670
[2] [1, 2,  10,   74,   730,    9002,    133210, ...  A004123
[3] [1, 3,  21,  219,  3045,   52923,   1103781, ...  A032033
[4] [1, 4,  36,  484,  8676,  194404,   5227236, ...  A094417
[5] [1, 5,  55,  905, 19855,  544505,  17919055, ...  A094418
[6] [1, 6,  78, 1518, 39390, 1277646,  49729758, ...  A094419
[7] [1, 7, 105, 2359, 70665, 2646007, 118893705, ...  A238464
		

Crossrefs

Variant of the array is A094416 (which has column 0 and row 0 missing).
The coefficients of the Fubini polynomials are A131689.
Cf. A094420 (main diagonal of array), A372346 (row sums), A004248, A371761.

Programs

  • Maple
    F := proc(n) option remember; if n = 0 then return 1 fi:
    expand(add(binomial(n, k)*F(n - k)*x, k = 1..n)) end:
    seq(seq(subs(x = k, F(n - k)), k = 0..n), n = 0..10);
  • Mathematica
    F[n_] := F[n] = If[n == 0, 1,
       Expand[Sum[Binomial[n, k]*F[n - k]*x, {k, 1, n}]]];
    Table[Table[F[n - k] /. x -> k, {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jun 06 2024, after Peter Luschny *)
  • SageMath
    # Computes the triangle.
    @cached_function
    def F(n):
        R. = PolynomialRing(ZZ)
        if n == 0: return R(1)
        return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
    def Fval(n): return [F(n - k).substitute(x = k) for k in (0..n)]
    for n in range(10): print(Fval(n))
    
  • SageMath
    # Computes the square array using the Akiyama-Tanigawa algorithm.
    def ATFubini(n, len):
        A = [0] * len
        R = [0] * len
        for k in range(len):
            R[k] = (n + 1)**k  # Chancing this to R[k] = k**n generates A371761.
            for j in range(k, 0, -1):
                R[j - 1] = j * (R[j] - R[j - 1])
            A[k] = R[0]
        return A
    for n in range(8): print([n], ATFubini(n, 7))  # Peter Luschny, Apr 27 2024

Formula

T(n, k) = (n - k)! * [x^(n - k)] (1 / (1 + k * (1 - exp(x)))).
T(2*n, n) = A094420(n).

A062275 Array A(n, k) = n^k * k^n, n, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 16, 3, 0, 0, 4, 72, 72, 4, 0, 0, 5, 256, 729, 256, 5, 0, 0, 6, 800, 5184, 5184, 800, 6, 0, 0, 7, 2304, 30375, 65536, 30375, 2304, 7, 0, 0, 8, 6272, 157464, 640000, 640000, 157464, 6272, 8, 0, 0, 9, 16384, 750141, 5308416, 9765625
Offset: 0

Views

Author

Henry Bottomley, Jul 02 2001

Keywords

Comments

Here 0^0 is defined to be 1. - Wolfdieter Lang, May 27 2018

Examples

			A(3, 2) = 3^2 * 2^3 = 9*8 = 72.
The array A(n, k) begins:
n\k 0 1   2   3    4     5      6      7       8        9       10 ...
0:  1 0   0   0    0     0      0      0       0        0        0 ...
1:  0 1   2   3    4     5      6      7       8        9       10 ...
2:  0 2  16  72  256   800   2304   6272   16384    41472   102400 ...
3:  0 3  72 729 5184 30375 157464 750141 3359232 14348907 59049000 ...
...
The triangle T(n, k) begins:
n\k  0  1    2      3      4      5      6    7  8  9 ...
0:   1
1:   0  0
2:   0  1    0
3:   0  2    2      0
4:   0  3   16      3      0
5:   0  4   72     72      4      0
6:   0  5  256    729    256      5      0
7:   0  6  800   5184   5184    800      6    0
8:   0  7 2304  30375  65536  30375   2304    7  0
9:   0  8 6272 157464 640000 640000 157464 6272  8  0
... - _Wolfdieter Lang_, May 22 2018
		

Crossrefs

Columns and rows of A, or columns and diagonals of T, include A000007, A001477, A007758, A062074, A062075 etc. Diagonals of A include A062206, A051443, A051490. Sum of rows of T are A062817(n), for n >= 1

Programs

  • Mathematica
    {{1}}~Join~Table[(#^k k^#) &[n - k], {n, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, May 24 2018 *)
  • PARI
    t1(n)=n-binomial(round(sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    a(n)=t1(n)^t2(n)*t2(n)^t1(n) \\ Eric Chen, Jun 09 2018

Formula

From Wolfdieter Lang, May 22 2018: (Start)
As a sequence: a(n) = A003992(n)*A004248(n).
As a triangle: T(n, k) = (n-k)^k * k^(n-k), for n >= 1 and k = 1..n. (End)

A110132 a(n) = floor(n/2)^ceiling(n/2).

Original entry on oeis.org

1, 0, 1, 1, 4, 8, 27, 81, 256, 1024, 3125, 15625, 46656, 279936, 823543, 5764801, 16777216, 134217728, 387420489, 3486784401, 10000000000, 100000000000, 285311670611, 3138428376721, 8916100448256, 106993205379072, 302875106592253, 3937376385699289
Offset: 0

Views

Author

Paul Barry, Jul 13 2005

Keywords

Comments

Central coefficients T(n,floor(n/2)) of number triangle A004248. The central coefficients T(2n,n) of this triangle are n^n or A000312.
a(n) is the number of partitions of [n] such that each block has exactly one even element: a(5) = 8: 1235|4, 123|45, 125|34, 12|345, 1345|2, 134|25, 145|23, 14|235. - Alois P. Heinz, Jun 01 2023

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Floor[n/2]^Ceiling[n/2],{n,30}]] (* Harvey P. Dale, Feb 16 2025 *)

A329940 Square array read by antidiagonals upwards: T(n,k) is the number of right unique relations between set A with n elements and set B with k elements.

Original entry on oeis.org

1, 3, 2, 7, 8, 3, 15, 26, 15, 4, 31, 80, 63, 24, 5, 63, 242, 255, 124, 35, 6, 127, 728, 1023, 624, 215, 48, 7, 255, 2186, 4095, 3124, 1295, 342, 63, 8, 511, 6560, 16383, 15624, 7775, 2400, 511, 80, 9, 1023, 19682, 65535, 78124, 46655, 16806, 4095, 728, 99, 10
Offset: 1

Views

Author

Roy S. Freedman, Nov 24 2019

Keywords

Comments

A relation R between set A with n elements and set B with k elements is a subset of the Cartesian product A x B. A relation R is right unique if (a, b1) in R and (a,b2) in R implies b1=b2. T(n,k) is the number of right unique relations and T(k,n) is the number of left unique relations: relation R is left unique if (a1,b) in R and (a2,b) in R implies a1=a2.

Examples

			T(n,k) begins:
    1,    2,     3,      4,       5,       6,        7,        8, ...
    3,    8,    15,     24,      35,      48,       63,       80, ...
    7,   26,    63,    124,     215,     342,      511,      728, ...
   15,   80,   255,    624,    1295,    2400,     4095,     6560, ...
   31,  242,  1023,   3124,    7775,   16806,    32767,    59048, ...
   63,  728,  4095,  15624,   46655,  117648,   262143,   531440, ...
  127, 2186, 16383,  78124,  279935,  823542,  2097151,  4782968, ...
  255, 6560, 65535, 390624, 1679615, 5764800, 16777215, 43046720, ...
		

Crossrefs

Cf. A037205 (main diagonal).

Programs

  • Maple
    T:= (n, k)-> (k+1)^n-1:
    seq(seq(T(1+d-k, k), k=1..d), d=1..12);
  • Mathematica
    T[n_, k_] := (k + 1)^n - 1; Table[T[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 25 2019 *)
  • MuPAD
    T:=(n,k)->(k+1)^n-1:

Formula

T(n,k) = (k+1)^n - 1.

A361390 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is carryless n^k base 10.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 9, 4, 1, 0, 1, 6, 7, 6, 5, 1, 0, 1, 2, 1, 4, 5, 6, 1, 0, 1, 4, 3, 6, 5, 6, 7, 1, 0, 1, 8, 9, 4, 5, 6, 9, 8, 1, 0, 1, 6, 7, 6, 5, 6, 3, 4, 9, 1, 0, 1, 2, 1, 4, 5, 6, 1, 2, 1, 10, 1, 0, 1, 4, 3, 6, 5, 6, 7, 6, 9, 100, 11, 1, 0, 1, 8, 9, 4, 5, 6, 9, 8, 1, 1000, 121, 12, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2023

Keywords

Examples

			4 * 4 = 16, so T(4,2) = 6. 6 * 4 = 24, so T(4,3) = 4.
Square array begins:
  1, 0, 0, 0, 0, 0, 0, 0, ...
  1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 2, 4, 8, 6, 2, 4, 8, ...
  1, 3, 9, 7, 1, 3, 9, 7, ...
  1, 4, 6, 4, 6, 4, 6, 4, ...
  1, 5, 5, 5, 5, 5, 5, 5, ...
  1, 6, 6, 6, 6, 6, 6, 6, ...
  1, 7, 9, 3, 1, 7, 9, 3, ...
		

Crossrefs

Columns k=0..4 give A000012, A001477, A059729, A169885, A169886.
Rows n=0..4 give A000007, A000012, A000689, A001148, A168428.
T(11,k) gives A059734.
Main diagonal gives A361351.

Programs

  • PARI
    T(n, k) = fromdigits(Vec(Pol(digits(n))^k)%10);

A362885 Array read by ascending antidiagonals: A(n, k) = (1 + 2*n)*k^n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 5, 6, 1, 0, 7, 20, 9, 1, 0, 9, 56, 45, 12, 1, 0, 11, 144, 189, 80, 15, 1, 0, 13, 352, 729, 448, 125, 18, 1, 0, 15, 832, 2673, 2304, 875, 180, 21, 1, 0, 17, 1920, 9477, 11264, 5625, 1512, 245, 24, 1, 0, 19, 4352, 32805, 53248, 34375, 11664, 2401, 320, 27, 1
Offset: 0

Views

Author

Stefano Spezia, May 08 2023

Keywords

Examples

			The array begins:
    1,  1,   1,    1,     1,     1, ...
    0,  3,   6,    9,    12,    15, ...
    0,  5,  20,   45,    80,   125, ...
    0,  7,  56,  189,   448,   875, ...
    0,  9, 144,  729,  2304,  5625, ...
    0, 11, 352, 2673, 11264, 34375, ...
    ...
		

Crossrefs

Cf. A000007 (k=0), A000012 (n=0), A004248, A005408 (k=1), A008585 (n=1), A014480 (k=2), A033429 (n=2), A058962 (k=4), A124647 (k=3), A155988 (k=9), A171220 (k=5), A176043, A199299 (k=6), A199300 (k=7), A199301 (k=8), A244727 (n=3), A362886 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=(1+2n)k^n; Join[{1}, Table[A[n-k,k],{n,10},{k,0,n}]]//Flatten (* or *)
    A[n_,k_]:=SeriesCoefficient[(1+k*x)/(1-k*x)^2,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
    A[n_,k_]:=n!SeriesCoefficient[Exp[k*x](1+2k*x),{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

A(n, k) = A005408(n)*A004248(n, k).
O.g.f. of column k: (1 + k*x)/(1 - k*x)^2.
E.g.f. of column k: exp(k*x)*(1 + 2*k*x).
A(n, n) = A176043(n+1).

A372118 Square array A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2 for k, n >= 0 read by ascending antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 6, 1, 15, 25, 9, 1, 31, 90, 55, 12, 1, 63, 301, 285, 97, 15, 1, 127, 966, 1351, 660, 151, 18, 1, 255, 3025, 6069, 4081, 1275, 217, 21, 1, 511, 9330, 26335, 23772, 9751, 2190, 295, 24, 1, 1023, 28501, 111645, 133057, 70035, 19981, 3465, 385, 27, 1
Offset: 0

Views

Author

Werner Schulte, Apr 19 2024

Keywords

Comments

Depending on some fixed integer m >= 0 we define a family of square arrays A(m; n, k) = (Sum_{i=0..m} (-1)^i * binomial(m, i) * (k + m - i)^(n+m)) / m! for k, n >= 0. Special cases are: A004248 (m=0), A343237 (m=1) and this array (m=2). The A(m; n, k) satisfy: A(m; n, k) = (k+m) * A(m; n-1, k) + A(m-1; n, k) with initial values A(0; n, k) = k^n and A(m; 0, k) = 1.
Further properties are conjectures:
(1) O.g.f. of column k is Prod_{i=k..k+m} 1 / (1 - i * t);
(2) E.g.f. of row n is exp(x) * (Sum_{k=0..n} binomial(k+m, m) * A048993(n+m, k+m) * x^k);
(3) The LU decompositions of these arrays are given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(m; n, k) = A048993(n+m, k+m) * (k+m)! / m!, i.e., A(m; n, k) = Sum_{i=0..k} L(m; n, i) * binomial(k, i).
The three conjectures are true, see links. - Sela Fried, Jul 07 2024

Examples

			Square array A(n, k) starts:
n\k :    0     1       2       3        4         5         6         7
=======================================================================
  0 :    1     1       1       1        1         1         1         1
  1 :    3     6       9      12       15        18        21        24
  2 :    7    25      55      97      151       217       295       385
  3 :   15    90     285     660     1275      2190      3465      5160
  4 :   31   301    1351    4081     9751     19981     36751     62401
  5 :   63   966    6069   23772    70035    170898    365001    706104
  6 :  127  3025   26335  133057   481951   1398097   3463615   7628545
  7 :  255  9330  111645  724260  3216795  11075670  31794105  79669320
  etc.
		

Crossrefs

Rows: A000012 (n=0), A008585 (n=1), A227776 (n=2).
Columns: A000225 (k=0), A000392 (k=1), A016269 (k=2), A016753 (k=3), A016103 (k=4), A019757 (k=5), A020570 (k=6), A020782 (k=7).
Main diagonal: A281596(n+2).

Programs

  • Mathematica
    A372118[n_, k_] := ((k+2)^(n+2) - 2*(k+1)^(n+2) + k^(n+2))/2;
    Table[A372118[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jul 10 2024 *)
  • PARI
    A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2

Formula

A(n, k) = (k+2) * A(n-1, k) + (k+1)^(n+1) - k^(n+1) for n > 0.
Conjectures:
(1) O.g.f. of column k is Prod_{i=k..k+2} 1 / (1 - i * t);
(2) E.g.f. of row n is exp(x) * (Sum_{k=0..n} binomial(k+2, 2) * A048993(n+2, k+2) * x^k);
(3) The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(n, k) = A048993(n+2, k+2) * (k+2)! / 2!, i.e., A(n, k) = Sum_{i=0..k} L(n, i) * binomial(k, i).
The three conjectures are true. See comments. - Sela Fried, Jul 09 2024

A375577 Array read by ascending antidiagonals: A(n,k) = k^n + k*n + 1.

Original entry on oeis.org

2, 1, 2, 1, 3, 2, 1, 4, 5, 2, 1, 5, 9, 7, 2, 1, 6, 15, 16, 9, 2, 1, 7, 25, 37, 25, 11, 2, 1, 8, 43, 94, 77, 36, 13, 2, 1, 9, 77, 259, 273, 141, 49, 15, 2, 1, 10, 143, 748, 1045, 646, 235, 64, 17, 2, 1, 11, 273, 2209, 4121, 3151, 1321, 365, 81, 19, 2
Offset: 0

Views

Author

Stefano Spezia, Aug 19 2024

Keywords

Examples

			Array begins:
  2, 2,  2,   2,    2,     2, ...
  1, 3,  5,   7,    9,    11, ...
  1, 4,  9,  16,   25,    36, ...
  1, 5, 15,  37,   77,   141, ...
  1, 6, 25,  94,  273,   646, ...
  1, 7, 43, 259, 1045,  3151, ...
  1, 8, 77, 748, 4121, 15656, ...
  ...
		

Crossrefs

Cf. A000290, A004247, A004248, A005408 (n=1), A005491 (n=3), A007395 (n=0), A054977 (k=0), A176691 (k=2), A176805 (k=3), A176916 (k=5), A176972 (k=7), A214647.
Cf. A375578 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]=2; A[n_,k_]:=k^n+k*n+1;Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

G.f. for the k-th column: (2*x^2 - 3*x - k^2 + k + 1)/((x - 1)^2*(x - k)).
E.g.f. for the k-th column: exp(x)*(1 + exp((k-1)*x) + k*x).
A(n,1) = n + 2.
A(2,n) = A000290(n+1).
A(n,n) = 2*A214647(n) + 1.

A338131 Triangle read by rows, T(n, k) = k^(n - k) + Sum_{i = 1..n-k} k^(n - k - i)*2^(i - 1), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 8, 8, 8, 4, 1, 16, 16, 20, 14, 5, 1, 32, 32, 48, 46, 22, 6, 1, 64, 64, 112, 146, 92, 32, 7, 1, 128, 128, 256, 454, 376, 164, 44, 8, 1, 256, 256, 576, 1394, 1520, 828, 268, 58, 9, 1, 512, 512, 1280, 4246, 6112, 4156, 1616, 410, 74, 10, 1
Offset: 0

Views

Author

Werner Schulte, Oct 11 2020

Keywords

Comments

This number triangle is case s = 2 of the triangles T(s; n,k) depending on some fixed integer s. Here are several (generalized) formulas and properties (attention: negative values are possible if s < 0):
(1) T(s; n,k) = k^(n-k) + Sum_{i=1..n-k} k^(n-k-i)*s^(i-1) for 0<=k<=n;
(2) T(s; n,n) = 1 for n >= 0, and T(s; n,n-1) = n for n > 0;
(3) T(s; n+1,k) = k * T(s; n,k) + s^(n-k) for 0<=k<=n;
(4) T(s; n,k) = (k+s) * T(s; n-1,k) - s*k * T(s; n-2,k) for 0<=k<=n-2;
(5) G.f. of column k: Sum_{n>=k} T(s; n,k)*t^n = ((1-(s-1)*t)/(1-s*t))
*(t^k/(1-k*t)) when t^k/(1-k*t) is g.f. of column k>=0 of A004248.

Examples

			The number triangle T(n, k) for 0 <= k <= n starts:
n\ k :    0     1      2      3      4      5      6     7    8    9   10
=========================================================================
   0 :    1
   1 :    1     1
   2 :    2     2      1
   3 :    4     4      3      1
   4 :    8     8      8      4      1
   5 :   16    16     20     14      5      1
   6 :   32    32     48     46     22      6      1
   7 :   64    64    112    146     92     32      7     1
   8 :  128   128    256    454    376    164     44     8    1
   9 :  256   256    576   1394   1520    828    268    58    9    1
  10 :  512   512   1280   4246   6112   4156   1616   410   74   10   1
		

Crossrefs

Cf. A004248.
For columns k = 0, 1, 2, 3, 4 see A011782, A000079, A001792, A027649, A010036 respectively.

Programs

  • Maple
    T := proc(n, k) if k = 0 then `if`(n = 0, 1, 2^(n-1)) elif k = 2 then n*2^(n-3)
    else (k^(n-k)*(1-k) + 2^(n-k))/(2-k) fi end:
    seq(seq(T(n, k), k=0..n), n=0..10); # Peter Luschny, Oct 29 2020
  • PARI
    T(n,k) = k^(n-k) + sum(i=1, n-k, k^(n-k-i) * 2^(i-1));
    matrix(7,7, n, k, if(n>=k, T(n-1,k-1), 0)) \\ to see the triangle \\ Michel Marcus, Oct 12 2020

Formula

T(n,k) = ((k-1) * k^(n-k) - 2^(n-k)) / (k-2) if k <> 2, and T(n,2) = n * 2^(n-3) for n >= k.
T(n,n) = 1 for n >= 0, and T(n,n-1) = n for n > 0.
T(n+1,k) = k * T(n,k) + 2^(n-k) for 0 <= k <= n.
T(n,k) = (k+2) * T(n-1,k) - 2*k * T(n-2,k) for 0 <= k <= n-2.
T(n,k) = k * T(n-1,k) + T(n-1,k-1) - (k-1) * T(n-2,k-1) for 0 < k < n.
G.f. of column k >= 0: Sum_{n>=k} T(n,k) * t^n = ((1-t) / (1-2*t)) * (t^k / (1-k*t)) when t^k / (1-k*t) is g. f. of column k of A004248.
G.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = ((1-t) / (1-2*t)) * (Sum_{k>=0} (x*t)^k / (1-k*t)).
Previous Showing 11-20 of 21 results. Next