cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 72 results. Next

A368155 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 3*x - 2*x^2.

Original entry on oeis.org

1, 1, 3, 2, 3, 7, 3, 9, 5, 15, 5, 15, 26, 3, 31, 8, 30, 43, 63, -15, 63, 13, 54, 104, 87, 144, -81, 127, 21, 99, 203, 273, 115, 333, -275, 255, 34, 177, 416, 549, 609, -9, 806, -789, 511, 55, 315, 811, 1263, 1146, 1260, -725, 2043, -2071, 1023, 89, 555, 1573
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2024

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
   1
   1    3
   2    3     7
   3    9     5    15
   5   15    26     3    31
   8   30    43    63   -15    63
  13   54   104    87   144   -81    127
  21   99   203   273   115   333   -275   255
Row 4 represents the polynomial p(4,x) = 3 + 9*x + 5*x^2 + 15*x^3, so (T(4,k)) = (3,9,5,15), k=0..3.
		

Crossrefs

Cf. A000045 (column 1); A000225, (p(n,n-1)); A001787 (row sums), (p(n,1)); A002605 (alternating row sums), (p(n,-1)); A004254, (p(n,-2)); A057084, (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150, A368151, A368152, A368153, A368154, A368156.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - 3x - 2x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 3*x, u = p(2,x), and v = 1 - 3*x - 2*x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 - 6*x + x^2), b = (1/2)*(3*x + 1 - 1/k), c = (1/2)*(2*x + 1 + 1/k).

A089927 Expansion of 1/((1-x^2)(1-5x+x^2)).

Original entry on oeis.org

1, 5, 25, 120, 576, 2760, 13225, 63365, 303601, 1454640, 6969600, 33393360, 159997201, 766592645, 3672966025, 17598237480, 84318221376, 403992869400, 1935646125625, 9274237758725, 44435542668001, 212903475581280
Offset: 0

Views

Author

Paul Barry, Nov 15 2003

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x^2)(1-5x+x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{5,0,-5,1},{1,5,25,120},30] (* Harvey P. Dale, Apr 12 2015 *)

Formula

a(n) = 5*a(n-1) - 5*a(n-3) + a(n-4).
a(n) = ((5-sqrt(21))^n*(23 - 5*sqrt(21)) + (5 + sqrt(21))^n*(23 + 5*sqrt(21)))/42/2^n + (-1)^n/14 - 1/6. [corrected by Jason Yuen, Aug 25 2024]
a(n) = Sum_{k=0..floor(n/2)} U(n-2k, 5/2) where U is the Chebyshev polynomial of the second kind.
a(n) = (-1)^n/14 - 1/6 + (23*A004254(n+1) - 5*A004254(n))/21. - R. J. Mathar, Mar 22 2011

A099867 a(n) = 5*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=9.

Original entry on oeis.org

1, 9, 44, 211, 1011, 4844, 23209, 111201, 532796, 2552779, 12231099, 58602716, 280782481, 1345309689, 6445765964, 30883520131, 147971834691, 708975653324, 3396906431929, 16275556506321, 77980876099676, 373628823992059, 1790163243860619, 8577187395311036
Offset: 0

Views

Author

Creighton Dement, Oct 28 2004

Keywords

Comments

From Klaus Purath, Mar 07 2023: (Start)
For any two terms (a(n), a(n+1)) = (x, y), x^2 - 5*x*y + y^2 = 37 = A082111(4). This is valid in general for all recursive sequences (t) with constant coefficients (5,-1) and t(0) = 1: x^2 - 5*x*y + y^2 = A082111(t(1)-5). This includes and interprets the Feb 04 2014 comment in A004253 by Colin Barker.
By analogy to all this, for three consecutive terms (x, y, z) of any sequence (t) of the form (5,-1) with t(0) = 1: y^2 - x*z = A082111(t(1)-5). (End)

Crossrefs

Programs

  • Magma
    I:=[1,9]; [n le 2 select I[n] else 5*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 30 2015
    
  • Mathematica
    a[0] = 1; a[1] = 9; a[n_] := a[n] = 5 a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 21}] (* Robert G. Wilson v, Dec 14 2004 *)
    LinearRecurrence[{5, -1}, {1, 9}, 30] (* or *) CoefficientList[Series[(1 + 4 x)/(1 - 5 x + x^2), {x, 0, 30}], x] (* Harvey P. Dale, Jun 26 2011 *)
  • PARI
    Vec((1+4*x) / (1-5*x+x^2) + O(x^30)) \\ Colin Barker, Mar 31 2017

Formula

|2*a(n) + A099868(n) - A003501(n+1)| = 20*A004254(n).
From R. J. Mathar, Sep 11 2008: (Start)
G.f.: (1+4*x) / (1-5*x+x^2).
a(n) = A004254(n+1) + 4*A004254(n).
(End)
a(n) = 2^(-1-n)*((5-sqrt(21))^n*(-13+sqrt(21)) + (5+sqrt(21))^n*(13+sqrt(21))) / sqrt(21). - Colin Barker, Mar 31 2017

A099868 a(n) = 5*a(n-1) - a(n-2), a(0) = 3, a(1) = 25.

Original entry on oeis.org

3, 25, 122, 585, 2803, 13430, 64347, 308305, 1477178, 7077585, 33910747, 162476150, 778470003, 3729873865, 17870899322, 85624622745, 410252214403, 1965636449270, 9417930031947, 45124013710465, 216202138520378, 1035886678891425, 4963231255936747
Offset: 0

Views

Author

Creighton Dement, Oct 28 2004

Keywords

Crossrefs

Programs

  • GAP
    a:=[3,25];; for n in [3..30] do a[n]:=5*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Nov 20 2018
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (3 +10*x)/(1-5*x+x^2))); // G. C. Greubel, Nov 20 2018
    
  • Maple
    a[0]:=3: a[1]:=25: for n from 2 to 30 do a[n]:=5*a[n-1]-a[n-2] od: seq(a[n],n=0..25);
  • Mathematica
    LinearRecurrence[{5,-1}, {3,25}, 30] (* G. C. Greubel, Nov 20 2018 *)
  • PARI
    Vec((3+10*x) / (1-5*x+x^2) + O(x^30)) \\ Colin Barker, Mar 28 2017
    
  • Sage
    s=((3+10*x)/(1-5*x+x^2)).series(x,30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 20 2018
    

Formula

|2*A099867(n) + a(n) - A003501(n+1)| = 20*A004254(n)
G.f.: (3 + 10*x) / (1 - 5*x + x^2). - Emeric Deutsch, Dec 03 2004
a(n) = (2^(-1-n)*((5-sqrt(21))^n*(-35+3*sqrt(21)) + (5+sqrt(21))^n*(35+3*sqrt(21)))) / sqrt(21). - Colin Barker, Mar 28 2017

A161498 Expansion of x*(1-x)*(1+x)/(1-13*x+36*x^2-13*x^3+x^4).

Original entry on oeis.org

1, 13, 132, 1261, 11809, 109824, 1018849, 9443629, 87504516, 810723277, 7510988353, 69584925696, 644660351425, 5972359368781, 55329992188548, 512595960817837, 4748863783286881, 43995092132369664, 407585519020921249
Offset: 1

Views

Author

R. J. Mathar, Jun 11 2009

Keywords

Comments

Proposed by R. Guy in the seqfan list, Mar 29 2009.
The sequence is the case P1 = 13, P2 = 34, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014

Crossrefs

Programs

  • Magma
    I:=[1,13,132,1261]; [n le 4 select I[n] else 13*Self(n-1)-36*Self(n-2)+13*Self(n-3)-Self(n-4): n in [1..20]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[(1 - x)*(1 + x)/(1 - 13*x + 36*x^2 - 13*x^3 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 19 2012 *)

Formula

a(n) = A139400(n) / ( A001906(n)*A001353(n)*A004254(n) ).
a(n) = 13*a(n-1)-36*a(n-2)+13*a(n-3)-a(n-4).
a(n) = A187732(n)-A187732(n-2). - R. J. Mathar, Mar 18 2011
From Peter Bala, Apr 03 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = 1/4*(13 + sqrt(33)), beta = 1/4*(13 - sqrt(33)) and where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = U(n-1,1/2*(4 + sqrt(3) ))*U(n-1,1/2*(4 - sqrt(3))) for n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -17/2; 1, 13/2].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)

A190986 a(n) = 10*a(n-1) - 4*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 10, 96, 920, 8816, 84480, 809536, 7757440, 74336256, 712332800, 6825982976, 65410498560, 626801053696, 6006368542720, 57556481212416, 551539337953280, 5285167454683136, 50645517195018240, 485314502131449856, 4650562952534425600, 44564371516818456576
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A190958 (index to generalized Fibonacci sequences).

Programs

  • Magma
    [2^(n-1)*Evaluate(ChebyshevU(n-1), 5/2): n in [0..30]]; // G. C. Greubel, Sep 03 2022
    
  • Mathematica
    LinearRecurrence[{10,-4}, {0,1}, 50]
  • SageMath
    A190986 = BinaryRecurrenceSequence(10, -4, 0, 1)
    [A190986(n) for n in (0..30)] # G. C. Greubel, Sep 03 2022

Formula

G.f.: x/(1 - 10*x + 4*x^2). - Philippe Deléham, Oct 12 2011
E.g.f.: (1/sqrt(21))*exp(5*x)*sinh(sqrt(21)*x). - G. C. Greubel, Sep 03 2022
a(n) = 2^(n-1)*S(n-1, 5), with the Chebyshev S-polynomial (see A049310) S(n-1, 5) = A004254(n). See the Magma program by G. C. Greubel. - Wolfdieter Lang, Nov 15 2023

A364368 An irregular triangle read by rows, the 5th row-symmetric Fibonaccian triangle: T(n,k) is the Whitney number of level k of the (5,n)-th symmetric Fibonaccian lattice (0 <= n, 0 <= k <= 4*n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 3, 2, 1, 1, 3, 6, 10, 13, 16, 17, 16, 13, 10, 6, 3, 1, 1, 4, 10, 20, 32, 46, 59, 68, 71, 68, 59, 46, 32, 20, 10, 4, 1, 1, 5, 15, 35, 66, 109, 161, 215, 263, 296, 308, 296, 263, 215, 161, 109, 66, 35, 15, 5, 1
Offset: 0

Views

Author

Keywords

Comments

For integers m and n (m >= 2, n > 0), let L be the set of n-tuples S=(S(1),...,S(n)) with each S(j) in {(j-1)*m+1,(j-1)*m+2,...,j*m} and such that S has no consecutive integers. Partially order these '(m,n) Fibonaccian strings' comprising L by the rule R <= S iff R(j) >= S(j) for 1 <= j <= n (so, 'lightest' n-tuples are at the top of the Hasse diagram for L). Then L is a self-dual distributive lattice, the '(m,n)-th symmetric Fibonaccian lattice'. When n=1, L is a chain with m elements. Now allow n=0; in this case, regard L to be a singleton set. Let p(n,x) be the rank generating function of L, so p(n,1)=|L|, p(0,x)=1, and p(1,x)=1+x+...+x^(m-1). For n >= 2, the fact that p(n,x) = p(1,x)*p(n-1,x) - x^(m-1)*p(n-2,x) can be deduced from a recurrence of Whitney numbers of symmetric Fibonaccian lattices proved in Proposition 2.1 of [Donnelly, Dunkum, Lišková, and Nance, 2023].
The (m,n)-th symmetric Fibonaccian lattice realizes a p(n,1)-dimensional representation of the special linear Lie algebra sl(m,C). The representation is reducible exactly when m >= 3 and n >= 3. The polynomial p(n,x) is a natural specialization of the character of this representation, where the latter can be identified as a certain skew Schur function. In [Donnelly, Dunkum, Lišková, and Nance, 2023], these representations are uniformly constructed (as an application of [Donnelly and Dunkum, 2022]) and explicit formulas for p(n,x) are given.
In [Donnelly, Dunkum, Lišková, and Nance, 2023], the (m,n)-th symmetric Fibonaccian lattice L is also described using semistandard tableaux of a specific ribbon shape; the irreducible components of the associated sl(m,C)-representation are in one-to-one correspondence with what are called the 'ballot-admissible' (aka Littlewood-Richardson) tableaux. In terms of Fibonaccian strings, an element S = (S(1),...,S(n)) in L is ballot-admissible iff for any integer q between 1 and n (inclusive) and any integer r between 1 and m-1 (inclusive), the following integer quantity is nonnegative: Sum_{k=n+1-q..n}([n+1-k is odd]*([r+(k-1)*m = S(k)] - [r+(k-1)*m+1 = S(k)]) + [n+1-k is even]*([k*m-r = S(k)]-[k*m+1-r = S(k)])), where '[]' denotes the Iverson bracket. Enumerating the ballot-admissible tableaux or Fibonaccian strings in L seems to be an interesting problem when m >= 3; when m=3, the sizes of the sets of ballot-admissible tableaux conjecturally agree with A004148.
In this OEIS entry, we have m=5. Let L be the (5,n)-th symmetric Fibonaccian lattice. When n=0, we have T(0,0) = |L| = 1. When n=1, we have T(1,0) = T(1,1) = T(1,2) = T(1,3) = T(1,4) = 1 and p(1,x) = 1+x+x^2+x^3+x^4, since L is a chain with 5 elements. For n >= 2, we have, by definition, p(n,x) = Sum_{k=0..4*n} T(n,k)*x^k. The Whitney number T(n,k) is the number of (5,n) Fibonaccian strings S=(S(1),...,S(n)) whose coordinate sum S(1)+...+S(n) is equal to 5*(n*(n+1)/2)-k.
For m=3, see A364366. For m=4, see A364367. When m=2, the (2,n)-th symmetric Fibonaccian lattice is a chain with n+1 elements and rank generating function 1+x+...+x^(n-1)+x^n. Therefore, the 2nd row-symmetric Fibonaccian triangle is a regular triangle of 1's. The 1st row-symmetric Fibonaccian 'triangle' is regarded to be the signed sequence 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, ... (A010892). 'Gibonaccian' versions of such triangles are considered in [Donnelly, Dunkum, Huber, and Knupp, 2021].

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 0) starts as follows:
  1;
  1,  1,  1,  1,  1;
  1,  2,  3,  4,  4,  4,  3,  2,  1;
  1,  3,  6, 10, 13, 16, 17, 16, 13, 10,  6,  3,  1;
  1,  4, 10, 20, 32, 46, 59, 68, 71, 68, 59, 46, 32, 20, 10,  4,  1;
...
Below are the 24 (5,2) Fibonaccian strings (organized by rank level) that comprise the (5,2)nd symmetric Fibonaccian lattice:
rank=8: (1,6)
rank=7: (1,7)   (2,6)
rank=6: (1,8)   (2,7)   (3,6)
rank=5: (1,9)   (2,8)   (3,7)   (4,6)
rank=4: (1,10)  (2,9)   (3,8)   (4,7)
rank=3: (2,10)  (3,9)   (4,8)   (5,7)
rank=2: (3,10)  (4,9)   (5,8)
rank=1: (4,10)  (5,9)
rank=0: (5,10)
The pair (5,6) is disallowed as a (5,2) Fibonaccian string since it contains consecutive integers.
In the (5,3)rd symmetric Fibonaccian lattice, rank level 9 consists of exactly the (5,3) Fibonaccian strings whose coordinate sum is 5*(3*(3+1)/2)-9=21: (1,6,14), (1,7,13), (1,8,12), (1,9,11), (2,6,13), (2,7,12), (2,8,11), (3,6,12), (3,7,11), and (4,6,11), confirming that T(3,9)=10.
		

Crossrefs

Sum of row n (n >= 0) is A004254(n+1), cf. row n=5 of the array A316269.

Formula

With T(0,0)=1, then T(n,k) = T(n-1,k-4) + T(n-1,k-3) + T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) - T(n-2,k-4) for n >= 1 and 0 <= k <= 4*n, understanding T(i,j) to be zero when j < 0 or j > 4*i. That the preceding recurrence holds is equivalent to the identity p(n,x) = (1+x+x^2+x^3+x^4)*p(n-1,x) - x^4*p(n-2,x) for n >= 1, where p(0,x)=1 and p(-1,x) is taken to be 0.

A106804 Expansion of g.f.: x*(2 - 9*x - 4*x^2)/((1 - 5*x + x^2)*(1 - 5*x - x^2)).

Original entry on oeis.org

0, 2, 11, 56, 285, 1452, 7406, 37816, 193295, 989002, 5065051, 25963276, 133199780, 683904902, 3514119571, 18069536436, 92975574865, 478701242652, 2466137174466, 12711910214796, 65558648361175, 338267429484502
Offset: 0

Views

Author

Roger L. Bagula, May 30 2005

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,2,11,56]; [n le 4 select I[n] else 10*Self(n-1) - 25*Self(n-2) + Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 11 2021
    
  • Mathematica
    M = {{0,0,0,1}, {1,5,0,0}, {0,1,0,0}, {0,0,1,5}}; v[1]= {0,1,1,2}; v[n_]:= v[n]= M.v[n-1]; Table[v[n][[1]], {n, 20}]
    LinearRecurrence[{10,-25,0,1},{0,2,11,56},30] (* Harvey P. Dale, Nov 29 2018 *)
  • Sage
    def A106804_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(2-9*x-4*x^2)/((1-5*x+x^2)*(1-5*x-x^2)) ).list()
    A106804_list(30) # G. C. Greubel, Sep 11 2021

Formula

G.f.: x*(2 - 9*x - 4*x^2)/((1 - 5*x + x^2)*(1 - 5*x - x^2)).
a(n) = (1/2)*((A052918(n) - 2*A052918(n-1)) - (A004254(n+1) - 6*A004254(n))). - G. C. Greubel, Sep 11 2021

Extensions

Edited by the Associate Editors of the OEIS, Apr 09 2009
Mathematica code fixed by Olivier Gérard, Dec 13 2011

A161495 Expansion of x*(3*x-1)*(x-3)/(1-15*x+32*x^2-15*x^3+x^4).

Original entry on oeis.org

3, 35, 432, 5405, 67773, 850080, 10663107, 133755235, 1677792528, 21045816925, 263993558397, 3311470367040, 41538271098243, 521045872287395, 6535871471114352, 81984366749625245, 1028391763981932093
Offset: 1

Views

Author

R. J. Mathar, Jun 11 2009

Keywords

Comments

Proposed by R. Guy in the seqfan list, Mar 29 2009.

Programs

  • Mathematica
    Rest[CoefficientList[Series[x(3x-1)(x-3)/(1-15x+32x^2-15x^3+x^4), {x,0,30}], x]] (* or *) LinearRecurrence[{15,-32,15,-1},{3,35,432,5405},30] (* Harvey P. Dale, Nov 03 2011 *)

Formula

G.f. x*(3*x-1)*(x-3)/(1-15*x+32*x^2-15*x^3+x^4).
a(n) = 15*a(n-1)-32*a(n-2)+15*a(n-3)-a(n-4).
(a(n))^2 = A161159(n)*A004254(n) = A003739(n)/(5*(A001906(n))^2).

A164582 a(n) = 5*a(n - 1) - a(n - 2), with n>2, a(1)=2, a(2)=3.

Original entry on oeis.org

2, 3, 13, 62, 297, 1423, 6818, 32667, 156517, 749918, 3593073, 17215447, 82484162, 395205363, 1893542653, 9072507902, 43468996857, 208272476383, 997893385058, 4781194448907, 22908078859477, 109759199848478, 525887920382913, 2519680402066087
Offset: 1

Views

Author

Vincenzo Librandi, Aug 17 2009

Keywords

Comments

From Klaus Purath, Aug 18 2024: (Start)
For any two consecutive terms (x,y), x^2 - 5xy + y^2 = -17 = A127147(6) always applies. In general, the following applies to all recurrences (t) with constant coefficients (5,-1) and t(0) = 2 and two consecutive terms (x,y): x^2 - 5xy + y^2 = A127147(t(1)+3) for any integer t(1). This includes and interprets the Feb 08 2014 comment on A003501 by Colin Barker.
By analogy to this, for three consecutive terms (x,y,z) of any recurrence (t) of the form (5,-1) with t(0) = 2: y^2 - xz = A127147(t(1)+3).
a(n) = t(n) - t(n-1) = (t(n+1) - t(n-2))/6, where (t) is any third order recurrence with constant coefficients (6,-6,1) and initial values t(0) = x, t(1) = x + 2, t(2) = x + 5 for any integer x.
a(n) = t(n-1) + t(n) = (t(n-2) + t(n+1))/4, where (t) is any third order recurrence with constant coefficients (4,4,-1) and initial values t(0) = x, t(1) = 2 - x, t(2) = x + 1 for any integer x. (End)

Programs

  • Magma
    [n le 2 select n+1 else 5*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 12 2013
    
  • Mathematica
    CoefficientList[Series[(2 - 7 x) / (1 - 5 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 12 2013 *)
    LinearRecurrence[{5,-1},{2,3},30] (* Harvey P. Dale, Apr 06 2016 *)
  • PARI
    Vec(x*(2 - 7*x) / (1 - 5*x + x^2) + O(x^30)) \\ Colin Barker, Nov 08 2017

Formula

a(n) = 5*a(n-1) - a(n-2) = 2*A004254(n) - 7*A004254(n-1).
G.f.: x*(2-7*x) / (1-5*x+x^2).
a(n) = (2^(-1-n)*((5+sqrt(21))^n*(-31+7*sqrt(21)) + (5-sqrt(21))^n*(31+7*sqrt(21)))) / sqrt(21). - Colin Barker, Nov 08 2017
a(n) = (a(n-1)^2 + 17)/a(n-2). - Klaus Purath, Aug 30 2020

Extensions

Extended by R. J. Mathar, Aug 19 2009
Previous Showing 61-70 of 72 results. Next