cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A055808 a(n) and floor(a(n)/4) are both squares; i.e., squares that remain squares when written in base 4 and last digit is removed.

Original entry on oeis.org

0, 1, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100
Offset: 0

Views

Author

Henry Bottomley, Jul 14 2000

Keywords

Comments

Let A(x) = (1 + k*x + (k-1)*x^2). Then the coefficients of (A(x))^2 sum to 4*k^2, where k = (n - 1). Examples: if k = 3 we have (1 + 3*x + 2*x^2)^2 = (1 + 6*x + 13x^2 + 12*x^3 + 4*x^4), and ( 1 + 6 + 13 + 12 + 4) = 36. If k = 4 we have (1 + 4*x + 3*x^2)^2 = (1 + 8*x + 22*x^2 + 24*x^3 + 9*x^4), and (1 + 8 + 22 + 24 + 9) = 64 = a(5). - Gary W. Adamson, Aug 02 2015
For n>0, a(n) are the Engel expansion of A197036. - Benedict W. J. Irwin, Dec 15 2016

Examples

			36 is in the sequence because 36 = 6^2 = 210 base 3 and 21 base 4 = 9 = 3^2.
		

Crossrefs

Cf. A023110. Essentially A016742 with one addition.

Programs

  • Magma
    [Floor((2*n^2)/(1 + n))^2: n in [0..60]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{0, 1}, LinearRecurrence[{3, -3, 1}, {4, 16, 36}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)
  • PARI
    concat(0, Vec(x*(x^3-7*x^2-x-1)/(x-1)^3 + O(x^100))) \\ Colin Barker, Sep 15 2014
    
  • PARI
    is_ok(n)=issquare(n) && issquare(floor(n/4));
    first(m)=my(v=vector(m),r=0);for(i=1,m,while(!is_ok(r),r++);v[i]=r;r++;);v; /* Anders Hellström, Aug 08 2015 */
    

Formula

a(n) = A004275(n)^2. - M. F. Hasler, Jan 16 2012
a(n) = 4*(-1+n)^2 for n>1; a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>4; G.f.: x*(x^3-7*x^2-x-1) / (x-1)^3. - Colin Barker, Sep 15 2014

A091090 In binary representation: number of editing steps (delete, insert, or substitute) to transform n into n + 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 19 2003

Keywords

Comments

Apparently, one less than the number of cyclotomic factors of the polynomial x^n - 1. - Ralf Stephan, Aug 27 2013
Let the binary expansion of n >= 1 end with m >= 0 1's. Then a(n) = m if n = 2^m-1 and a(n) = m+1 if n > 2^m-1. - Vladimir Shevelev, Aug 14 2017

Crossrefs

This is Guy Steele's sequence GS(2, 4) (see A135416).

Programs

  • Haskell
    a091090 n = a091090_list !! n
    a091090_list = 1 : f [1,1] where f (x:y:xs) = y : f (x:xs ++ [x,x+y])
    -- Same list generator function as for a036987_list, cf. A036987.
    -- Reinhard Zumkeller, Mar 13 2011
    
  • Haskell
    a091090' n = levenshtein (show $ a007088 (n + 1)) (show $ a007088 n) where
      levenshtein :: (Eq t) => [t] -> [t] -> Int
      levenshtein us vs = last $ foldl transform [0..length us] vs where
        transform xs@(x:xs') c = scanl compute (x+1) (zip3 us xs xs') where
          compute z (c', x, y) = minimum [y+1, z+1, x + fromEnum (c' /= c)]
    -- Reinhard Zumkeller, Jun 09 2015
    
  • Haskell
    -- following Vladeta Jovovic's formula
    import Data.List (transpose)
    a091090'' n = vjs !! n where
       vjs = 1 : 1 : concat (transpose [[1, 1 ..], map (+ 1) $ tail vjs])
    -- Reinhard Zumkeller, Jun 09 2015
    
  • Maple
    A091090 := proc(n)
        if n = 0 then
            1;
        else
            A007814(n+1)+1-A036987(n) ;
        end if;
    end proc:
    seq(A091090(n),n=0..100); # R. J. Mathar, Sep 07 2016
    # Alternatively, explaining the connection with A135517:
    a := proc(n) local count, k; count := 1; k := n;
    while k <> 1 and k mod 2 <> 0 do count := count + 1; k := iquo(k, 2) od:
    count end: seq(a(n), n=0..101); # Peter Luschny, Aug 10 2017
  • Mathematica
    a[n_] := a[n] = Which[n==0, 1, n==1, 1, EvenQ[n], 1, True, a[(n-1)/2] + 1]; Array[a, 102, 0] (* Jean-François Alcover, Aug 12 2017 *)
  • PARI
    a(n)=my(m=valuation(n+1,2)); if(n>>m, m+1, max(m, 1)) \\ Charles R Greathouse IV, Aug 15 2017
    
  • Python
    def A091090(n): return (~(n+1)&n).bit_length()+bool(n&(n+1)) if n else 1 # Chai Wah Wu, Sep 18 2024

Formula

a(n) = LevenshteinDistance(A007088(n), A007088(n + 1)).
a(n) = A007814(n + 1) + 1 - A036987(n).
a(n) = A152487(n + 1, n). - Reinhard Zumkeller, Dec 06 2008
a(A004275(n)) = 1. - Reinhard Zumkeller, Mar 13 2011
From Vladeta Jovovic, Aug 25 2004, fixed by Reinhard Zumkeller, Jun 09 2015: (Start)
a(2*n) = 1, a(2*n + 1) = a(n) + 1 for n > 0.
G.f.: 1 + Sum_{k > 0} x^(2^k - 1)/(1 - x^(2^(k - 1))). (End)
Let T(x) be the g.f., then T(x) - x*T(x^2) = x/(1 - x). - Joerg Arndt, May 11 2010
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Sep 29 2023
a(n) = A000120(n) + A070939(n) - A000120(n+1) - A070939(n+1) + 2. - Chai Wah Wu, Sep 18 2024

A204518 Numbers such that floor(a(n)^2 / 6) is a square.

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 27, 49, 98, 267, 485, 970, 2643, 4801, 9602, 26163, 47525, 95050, 258987, 470449, 940898, 2563707, 4656965, 9313930, 25378083, 46099201, 92198402, 251217123, 456335045, 912670090, 2486793147, 4517251249, 9034502498, 24616714347
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Or: Numbers whose square, with its last base-6 digit dropped, is again a square. (For the three initial terms whose square has only one digit in base 6, this is then meant to yield zero.)

Crossrefs

Cf. A023110 (base 10), A204502 (base 9), A204514 (base 8), A204516 (base 7), A204520 (base 5), A004275 (base 4), A055793 (base 3), A055792 (base 2).

Programs

  • PARI
    b=6;for(n=0,2e9,issquare(n^2\b) & print1(n","))
    
  • PARI
    concat(0, Vec(-x^2*(x+1)*(3*x^4+7*x^3-2*x^2-x-1)/(x^6-10*x^3+1) + O(x^100))) \\ Colin Barker, Sep 18 2014

Formula

a(n) = sqrt(A055851(n)).
From Colin Barker, Sep 18 2014: (Start)
a(n) = 10*a(n-3) - a(n-6) for n > 7.
G.f.: -x^2*(x+1)*(3*x^4 + 7*x^3 - 2*x^2 - x - 1) / (x^6-10*x^3+1). (End)
a(3n+2) = A001079(n). a(3n) = A087799(n-1). - R. J. Mathar, Feb 05 2020

Extensions

More terms from Colin Barker, Sep 18 2014

A204520 Numbers such that floor(a(n)^2 / 5) is a square.

Original entry on oeis.org

0, 1, 2, 3, 7, 9, 18, 47, 123, 161, 322, 843, 2207, 2889, 5778, 15127, 39603, 51841, 103682, 271443, 710647, 930249, 1860498, 4870847, 12752043, 16692641, 33385282
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Also: Numbers whose square, with its last base-5 digit dropped, is again a square. (For the three initial terms whose squares have only one digit in base 5, it is then understood that this yields zero.)

Crossrefs

Cf. A031149, A055812, A204502, A204514, A204516, A204518 and A004275, A001075, A001541 for the analog in bases 10,...,6 and 4, 3, 2.

Programs

  • Mathematica
    Select[Range[0,5*10^6],IntegerQ[Sqrt[Floor[#^2/5]]]&] (* The program generates the first 24 terms of the sequence. *) (* Harvey P. Dale, Jul 15 2025 *)
  • PARI
    b=5;for(n=0,2e9,issquare(n^2\b) && print1(n","))

Formula

a(n) = sqrt(A055812(n)).
Empirical g.f.: -x^2*(x+1)*(3*x^6 + 4*x^5 + 14*x^4 - 5*x^3 - 2*x^2 - x-1) / ((x^4 - 4*x^2 - 1)*(x^4 + 4*x^2 - 1)). - Colin Barker, Sep 15 2014

A046698 a(0) = 0, a(1) = 1, a(n) = a(a(n-1)) + a(a(n-2)) if n > 1.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Partial sums are A004275. Binomial transform is A048492, starting with 0. - Paul Barry, Feb 28 2003
From Elmo R. Oliveira, Jul 25 2024: (Start)
Continued fraction expansion of 2 - sqrt(2) = A101465.
Decimal expansion of 101/9000. (End)

References

  • Sequence proposed by Reg Allenby.

Crossrefs

Cf. A004275, A048492, A101465 (decimal expansion of 2 - sqrt(2)).

Programs

  • Mathematica
    CoefficientList[Series[x (1 + x^2)/(1 - x), {x, 0, 104}], x] (* or *)
    Nest[Append[#, #[[#[[-1]] + 1]] + #[[#[[-2]] + 1 ]]] &, {0, 1}, 105] (* Michael De Vlieger, Jul 31 2020 *)
  • PARI
    a(n)=(n>0)+(n>2)

Formula

G.f.: x*(1+x^2)/(1-x). - Paul Barry, Feb 28 2003
From Elmo R. Oliveira, Jul 25 2024: (Start)
E.g.f.: 2*exp(x) - x - 1.
a(n) = 2 for n > 2.
a(n) = 2 - A033324(n+2) = 4 - A343461(n+4) = A114955(n+6) - 6. (End)

A249982 T(n,k) is the number of length n+1 0..2*k arrays with the sum of the absolute values of adjacent differences equal to n*k.

Original entry on oeis.org

4, 6, 10, 8, 24, 20, 10, 42, 88, 64, 12, 64, 208, 384, 136, 14, 90, 426, 1242, 1606, 466, 16, 120, 728, 3030, 6856, 7138, 1012, 18, 154, 1178, 6252, 22560, 43068, 31380, 3580, 20, 192, 1744, 11524, 55372, 168506, 245860, 141272, 7864, 22, 234, 2508, 19574, 123154
Offset: 1

Views

Author

R. H. Hardin, Nov 10 2014

Keywords

Examples

			Table starts:
.....4.......6........8........10.........12..........14..........16
....10......24.......42........64.........90.........120.........154
....20......88......208.......426........728........1178........1744
....64.....384.....1242......3030.......6252.......11524.......19574
...136....1606.....6856.....22560......55372......123154......237348
...466....7138....43068....168506.....508902.....1290856.....2886016
..1012...31380...245860...1293326....4598532....14027522....35380112
..3580..141272..1589346...9937894...43752328...152155572...446342246
..7864..635686..9213728..77372824..399919272..1672105528..5529256528
.28340.2890884.60568000.604180880.3872197278.18444783546.70948896558
Some solutions for n=5 k=4:
..8....5....0....8....3....7....1....0....8....1....1....1....0....0....2....4
..3....1....5....3....8....0....6....3....4....6....2....5....7....2....5....8
..8....6....3....8....0....7....3....2....8....0....6....3....1....8....7....7
..1....4....4....0....2....5....7....8....8....2....0....8....4....6....0....3
..1....8....0....1....4....3....1....1....1....0....5....2....6....0....0....0
..4....3....8....2....1....1....3....4....6....5....1....5....4....4....8....8
		

Crossrefs

Row 1 is A004275(n+2).
Row 2 is A067728.

Formula

Empirical for row n:
n=1: a(n) = 2*n + 2
n=2: a(n) = 2*n^2 + 8*n
n=3: a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6); also a polynomial of degree 3 plus a quasipolynomial of degree 1 with period 2
n=4: a(n) = (14/3)*n^4 + (56/3)*n^3 + (121/3)*n^2 - (5/3)*n + 2
n=5: [linear recurrence of order 10; also a polynomial of degree 5 plus a quasipolynomial of degree 3 with period 2]
n=6: a(n) = (1987/180)*n^6 + (2033/30)*n^5 + (2785/18)*n^4 + 226*n^3 - (3017/180)*n^2 + (697/30)*n
n=7: [order 14; also a polynomial of degree 7 plus a quasipolynomial of degree 5 with period 2]

A255545 Lucky / Unlucky array: Each row starts with n-th lucky number, followed by all unlucky numbers removed at stage n of the sieve.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 6, 11, 19, 9, 8, 17, 39, 27, 13, 10, 23, 61, 57, 45, 15, 12, 29, 81, 91, 97, 55, 21, 14, 35, 103, 121, 147, 117, 85, 25, 16, 41, 123, 153, 199, 181, 177, 109, 31, 18, 47, 145, 183, 253, 243, 277, 225, 139, 33, 20, 53, 165, 217, 301, 315, 369, 345, 295, 157, 37, 22, 59, 187, 247, 351, 379, 471, 465, 447, 325, 175, 43
Offset: 1

Views

Author

Antti Karttunen, Feb 25 2015

Keywords

Comments

The array A(row,col) is read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Examples

			The top left corner of the array:
   1,   2,   4,   6,   8,  10,  12,   14,   16,   18,   20,   22,   24,   26,   28
   3,   5,  11,  17,  23,  29,  35,   41,   47,   53,   59,   65,   71,   77,   83
   7,  19,  39,  61,  81, 103, 123,  145,  165,  187,  207,  229,  249,  271,  291
   9,  27,  57,  91, 121, 153, 183,  217,  247,  279,  309,  343,  373,  405,  435
  13,  45,  97, 147, 199, 253, 301,  351,  403,  453,  507,  555,  609,  661,  709
  15,  55, 117, 181, 243, 315, 379,  441,  505,  571,  633,  697,  759,  825,  889
  21,  85, 177, 277, 369, 471, 567,  663,  757,  853,  949, 1045, 1141, 1239, 1333
  25, 109, 225, 345, 465, 589, 705,  829,  945, 1063, 1185, 1305, 1423, 1549, 1669
  31, 139, 295, 447, 603, 765, 913, 1075, 1227, 1377, 1537, 1689, 1843, 1999, 2155
  33, 157, 325, 493, 667, 835, 999, 1177, 1347, 1513, 1687, 1861, 2029, 2205, 2367
...
		

Crossrefs

Inverse: A255546.
Transpose: A255547.
Column 1: A000959. Other columns of array as in A255543, e.g. column 2: A219178.
Row 1: A004275 (starting from 1).
See A255551 for a slightly different variant.

Programs

Formula

For col = 1, A(row,col) = A000959(row); otherwise, A(row,col) = A255543(row,col-1).

A269606 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by one or less.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 8, 6, 25, 60, 62, 10, 7, 36, 120, 222, 154, 12, 8, 49, 210, 572, 804, 376, 14, 9, 64, 336, 1220, 2692, 2878, 902, 16, 10, 81, 504, 2298, 7030, 12570, 10192, 2142, 18, 11, 100, 720, 3962, 15630, 40288, 58280, 35812, 5040, 20, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
..8....62....222.....572.....1220......2298......3962.......6392.......9792
.10...154....804....2692.....7030.....15630.....31024......56584......96642
.12...376...2878...12570....40288....105892....242226.....499798.....952180
.14...902..10192...58280...229754....714874...1886252....4405772....9366790
.16..2142..35812..268704..1304934...4811578..14654952...38768412...92013754
.18..5040.125012.1233046..7385898..32300252.113629480..340600002..902743646
.20.11786.434110.5636046.41679780.216337084.879470154.2988094770.8846649136

Examples

			Some solutions for n=6 k=4
..1. .0. .3. .0. .3. .2. .1. .1. .0. .3. .2. .3. .2. .1. .1. .2
..3. .2. .2. .2. .0. .4. .2. .2. .3. .4. .0. .0. .0. .4. .1. .2
..0. .0. .3. .4. .3. .2. .3. .3. .1. .4. .4. .3. .3. .3. .2. .3
..4. .1. .0. .3. .1. .0. .3. .1. .0. .3. .1. .1. .3. .0. .1. .1
..3. .3. .2. .4. .3. .4. .0. .0. .1. .4. .2. .3. .2. .3. .2. .0
..1. .3. .1. .3. .0. .4. .1. .3. .1. .0. .3. .3. .0. .3. .0. .0
		

Crossrefs

Column 1 is A004275(n+1).
Column 3 is A269532.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2)
k=2: a(n) = 5*a(n-1) -5*a(n-2) -8*a(n-3) +12*a(n-4)
k=3: a(n) = 7*a(n-1) -9*a(n-2) -23*a(n-3) +31*a(n-4) +33*a(n-5)
k=4: [order 7]
k=5: [order 7]
k=6: [order 9]
k=7: [order 9]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 4*n^2 - n
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 - 4*n^2 + n
n=6: a(n) = n^6 + 6*n^5 + 11*n^4 - 8*n^3 + n^2 + 3*n - 2
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 - 12*n^4 - 5*n^3 + 18*n^2 - 15*n + 4

A204517 Square root of floor[A055859(n)/7].

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 17, 48, 96, 271, 765, 1530, 4319, 12192, 24384, 68833, 194307, 388614, 1097009, 3096720, 6193440, 17483311, 49353213, 98706426, 278635967, 786554688, 1573109376, 4440692161, 12535521795, 25071043590, 70772438609, 199781794032, 399563588064
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=7;for(n=1,2e9,issquare(n^2\b) & print1(sqrtint(n^2\b),","))
    
  • PARI
    A204517(n)=polcoeff((x^4 + 3*x^5 + 6*x^6 + x^7)/(1 - 16*x^3 + x^6+O(x^n)),n)

Formula

A204517(n) = sqrt(floor(A204516(n)^2/7)).
G.f. = (x^4 + 3*x^5 + 6*x^6 + x^7)/(1 - 16*x^3 + x^6)

A207391 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 14, 81, 98, 64, 10, 21, 196, 271, 200, 100, 12, 31, 441, 834, 643, 350, 144, 14, 46, 961, 2307, 2356, 1271, 556, 196, 16, 68, 2116, 6115, 7561, 5348, 2239, 826, 256, 18, 100, 4624, 16544, 23071, 19319, 10570, 3641, 1168, 324, 20, 147
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Table starts
..2...4....6....9....14.....21.....31......46.......68......100.......147
..4..16...36...81...196....441....961....2116.....4624....10000.....21609
..6..36...98..271...834...2307...6115...16544....44250...116526....307117
..8..64..200..643..2356...7561..23071...72410...223804...678174...2060069
.10.100..350.1271..5348..19319..65955..232892...806886..2731598...9282799
.12.144..556.2239.10570..42167.158217..616386..2348280..8718366..32527713
.14.196..826.3641.18972..82477.335915.1424240..5887228.23664574..95673277
.16.256.1168.5581.31710.148743.651531.2975974.13215696.56972122.247183399

Examples

			Some solutions for n=4 k=3
..1..0..0....0..0..0....0..1..1....1..1..1....1..1..1....1..0..1....1..0..1
..0..0..0....0..1..1....1..1..0....1..1..1....1..0..1....1..0..1....0..1..1
..1..0..0....0..1..1....1..1..1....1..1..1....1..1..1....1..0..1....0..1..1
..0..0..0....0..1..1....1..1..1....1..1..1....1..1..1....1..0..1....0..1..1
		

Crossrefs

Column 1 is A004275(n+1)
Column 2 is A016742
Column 3 is A207106
Column 4 is A207107
Row 1 is A038718(n+2)
Row 2 is A207069

Formula

Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = (4/3)*n^3 + 8*n^2 - (10/3)*n
k=4: a(n) = (5/12)*n^4 + (13/2)*n^3 + (115/12)*n^2 - (17/2)*n + 1
k=5: a(n) = (2/15)*n^5 + (55/12)*n^4 + (101/6)*n^3 + (5/12)*n^2 - (299/30)*n + 2
k=6: a(n) = (1/36)*n^6 + (113/60)*n^5 + (151/9)*n^4 + (95/4)*n^3 - (605/36)*n^2 - (229/30)*n + 3
k=7: a(n) = (1/210)*n^7 + (103/180)*n^6 + (197/20)*n^5 + (1439/36)*n^4 + (293/20)*n^3 - (3469/90)*n^2 + (157/105)*n + 3
Previous Showing 11-20 of 44 results. Next