cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A110854 A155750(n)-A155067(n) = prime(2n+2)-prime(2n+1)-prime(2n)+prime(2n-1).

Original entry on oeis.org

1, 0, 0, 4, 0, -4, 4, -4, 2, 2, 0, -2, 0, 0, 0, -2, 0, 4, 0, -4, 0, 0, 10, -10, 4, 4, -4, -4, 2, 6, -6, 0, 2, -4, 4, 0, -2, 4, 0, -6, 0, 2, 4, -6, 10, -8, 0, 8, 6, -8, -4, 0, 0, -4, 4, -4, 8, -6, 2, 6, -6, 4, 0, -4, -2, 2, 2, 6, -2, -2, -6, 6, -6, 0, 0, 0, 0, 6, -6, 2, -2, 2, 0, -2, -2, 0, 8, 0
Offset: 1

Views

Author

Paul Curtz, Aug 25 2008

Keywords

Comments

Do the absolute values cover A004275?

Programs

  • Mathematica
    #[[4]]-#[[3]]-#[[2]]+#[[1]]&/@Partition[Prime[Range[200]],4,2] (* Harvey P. Dale, Oct 11 2020 *)

Extensions

Edited by R. J. Mathar, Feb 27 2009

A204504 A204512(n)^2 = floor[A055872(n)/8]: Squares such that appending some digit in base 8 yields another square.

Original entry on oeis.org

0, 0, 0, 1, 4, 36, 144, 1225, 4900, 41616, 166464, 1413721, 5654884, 48024900, 192099600, 1631432881, 6525731524, 55420693056, 221682772224, 1882672131025, 7530688524100, 63955431761796, 255821727047184, 2172602007770041, 8690408031080164, 73804512832419600
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-8 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9),
A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7),
A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5),
A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3),
A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=8;for(n=1,2e9,issquare(n^2\b) & print1((n^2\b)","))
    
  • PARI
    a(n)=polcoeff(x^4*(1 + 4*x + x^2 + 4*x^3)/(1 - 35*x^2 + 35*x^4 - x^6+O(x^n)), n)

Formula

a(n)=A204512(n)^2.
G.f. = x^4*(1 + 4*x + x^2 + 4*x^3)/(1 - 35*x^2 + 35*x^4 - x^6)

A251862 Numbers m such that m + 3 divides m^m - 3.

Original entry on oeis.org

3, 7, 10, 27, 727, 1587, 9838, 758206, 789223, 1018846, 1588126, 1595287, 2387206, 4263586, 9494746, 12697378, 17379860, 21480726, 25439767, 38541526, 44219926, 55561536, 62072326, 64335356, 70032586, 83142466, 85409276
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 10 2014

Keywords

Comments

m such that m+3 divides (-3)^m - 3. - Robert Israel, Dec 14 2014

Examples

			3 is in this sequence because 3 + 3 = 6 divides 3^3 - 3 = 24.
		

Crossrefs

Cf. ...............Numbers n such that x divides y, where:
...x.....y......k=0.......k=1.......k=2........k=3........
..n-k..n^n-k..A000027...A087156...A242787....A242788......
..n-k..n^n+k..A000027..see below..A249751....A252041......
..n+k..n^n-k..A000027...A004275...A251603..this sequence..
..n+k..n^n+k..A000027...A004273...A213382....A242800......
(For x=n-1 and y=n^n+1, the only terms are 0, 2 and 3. - David L. Harden, Jan 14 2015)

Programs

  • Magma
    [n: n in [2..10000] | Denominator((n^n-3)/(n+3)) eq 1];
    
  • Maple
    select(t ->((-3) &^ (t) - 3) mod (t+3) = 0, [$1..10^6]); # Robert Israel, Dec 14 2014
  • Mathematica
    a251862[n_] := Select[Range[n], Mod[PowerMod[#, #, # + 3] - 3, # + 3] == 0 &]; a251862[10^6] (* Michael De Vlieger, Dec 14 2014, after Robert G. Wilson v at A252041 *)
  • PARI
    isok(n) = Mod(n, n+3)^n == 3; \\ Michel Marcus, Dec 10 2014
    
  • Python
    A251862_list = [n for n in range(10**6) if pow(-3, n, n+3) == 3] # Chai Wah Wu, Jan 19 2015
  • Sage
    [n for n in range(10^4) if (n + 3).divides((-3)^n - 3)] # Peter Luschny, Jan 17 2015
    

Extensions

More terms from Michel Marcus, Dec 10 2014

A007457 Number of (j,k): j+k=n, (j,n)=(k,n)=1, j,k squarefree.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 4, 4, 2, 2, 4, 4, 6, 4, 4, 6, 8, 6, 6, 6, 4, 8, 8, 8, 8, 8, 8, 6, 10, 8, 10, 10, 8, 12, 8, 10, 14, 12, 10, 12, 16, 10, 18, 14, 12, 14, 16, 14, 16, 14, 10, 16, 20, 14, 12, 16, 14, 20, 18, 14, 22, 20, 16, 20
Offset: 1

Views

Author

Keywords

Comments

Terms are even or 1: range = A004275. [Reinhard Zumkeller, Sep 26 2011]

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007457 n = length [k | k <- [1..n-1], gcd k n == 1, a008966 k == 1,
                            let j = n - k, gcd j n == 1, a008966 j == 1]
    -- Reinhard Zumkeller, Sep 26 2011
    
  • Magma
    f:=func; [0] cat [#[i:i in [1..n-1]| f(i,n) and f(n-i,n) ]:n in [2..70]]; // Marius A. Burtea, Nov 19 2019
    
  • Magma
    [0] cat [&+[MoebiusMu(i*(n-i))^2:i in [1..n-1]]:n in [2..70]]; // Marius A. Burtea, Nov 19 2019
  • Maple
    with(numtheory): seq(add(mobius(i*(n-i))^2, i=1..n-1), n=1..80); # Ridouane Oudra, Nov 18 2019
  • Mathematica
    a[n_] := Count[ Table[ If[ SquareFreeQ[j] && GCD[j, n] == 1, If[k = n-j; SquareFreeQ[k] && GCD[k, n] == 1, 1]], {j, 1, n-1}], 1]; Table[a[n], {n, 1, 64}](* Jean-François Alcover, Nov 28 2011 *)

Formula

a(n) = Sum_{i=1..n-1} mu(i*(n-i))^2. - Ridouane Oudra, Nov 18 2019

A204575 Squares such that [a(n)/2] is again a square (A055792), written in binary.

Original entry on oeis.org

0, 1, 1001, 100100001, 10011001001001, 1010001010010000001, 101011001001001011001001, 10110111001100110101000100001, 1100001001111011011000010110001001, 110011100111010101001010101001000000001
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

A204576 Floor[A055792(n-1)/2]=A084703(n-2) (truncated squares), written in binary.

Original entry on oeis.org

0, 0, 100, 10010000, 1001100100100, 101000101001000000, 10101100100100101100100, 1011011100110011010100010000, 110000100111101101100001011000100, 11001110011101010100101010100100000000, 1101101100101100000000000111010111101000100
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Comments

A204575 with the last (binary) digit (necessarily = 1, except for a(1)=0) deleted.
Also: Squares, written in binary, such that appending a (binary) digit (necessarily = 1) yields another square (except for a(1)=0 which corresponds to A204575(1)=00, the only square which remains square when multiplied by 2).

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

A252606 Numbers j such that j + 2 divides 2^j + 2.

Original entry on oeis.org

3, 4, 16, 196, 2836, 4551, 5956, 25936, 46775, 65536, 82503, 540736, 598816, 797476, 1151536, 3704416, 4290771, 4492203, 4976427, 8095984, 11272276, 13362420, 21235696, 21537831, 21549347, 29640832, 31084096, 42913396, 49960912, 51127259, 55137316, 56786087, 60296571, 70254724, 70836676
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 03 2015

Keywords

Comments

Numbers j such that (2^j + 2)/(j + 2) is an integer. Numbers j such that (2^j - j)/(j + 2) is an integer.
From Robert Israel, Apr 09 2015: (Start)
The even members of this sequence (4, 16, 196, 2836, ...) are the numbers 2*k-2 where k>=3 is odd and 4^k == -8 (mod k).
The odd members of this sequence (3, 4551, 46775, 82503, ...) are the numbers k-2 where k>=3 is odd and 2^k == -8 (mod k). (End)
2^m is in this sequence for m = (2, 4, 16, 36, 120, 256, 456, 1296, 2556, ...), with the subsequence m = 2^k, k = (1, 2, 4, 8, 16, ...). - M. F. Hasler, Apr 09 2015

Examples

			3 is in this sequence because (2^3 + 2)/(3 + 2) = 2.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1200000] | Denominator((2^n+2)/(n+2)) eq 1];
    
  • Maple
    select(t -> 2 &^t + 2 mod (t + 2) = 0, [$1..10^6]); # Robert Israel, Apr 09 2015
  • Mathematica
    Select[Range[10^6],IntegerQ[(2^#+2)/(#+2)]&] (* Ivan N. Ianakiev, Apr 17 2015 *)
  • PARI
    for(n=1,10^5,if((2^n+2)%(n+2)==0,print1(n,", "))) \\ Derek Orr, Apr 05 2015
    
  • PARI
    is(n)=Mod(2,n+2)^n==-2 \\ M. F. Hasler, Apr 09 2015
    
  • Python
    A252606_list = [n for n in range(10**4) if pow(2, n, n+2) == n] # Chai Wah Wu, Apr 16 2015

Extensions

a(17)-a(22) from Tom Edgar, Mar 03 2015
More terms from Chai Wah Wu, Apr 16 2015

A069470 a(n) = Sum_{k>=1} floor(n/(k*(k+1)/2)).

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 9, 10, 11, 13, 15, 16, 19, 20, 21, 24, 25, 26, 29, 30, 32, 35, 36, 37, 40, 41, 42, 44, 46, 47, 52, 53, 54, 56, 57, 58, 62, 63, 64, 66, 68, 69, 73, 74, 75, 79, 80, 81, 84, 85, 87, 89, 90, 91, 94, 96, 98, 100, 101, 102, 107, 108, 109, 112, 113, 114, 118
Offset: 0

Views

Author

Henry Bottomley, Mar 25 2002

Keywords

Comments

The summation has floor(1/2 + sqrt(2*n)) = A002024(n) nonzero terms. - Enrique Pérez Herrero, Apr 05 2010

Examples

			a(11) = floor(11/1) + floor(11/3) + floor(11/6) + floor(11/10) + floor(11/15) + ... = 11 + 3 + 1 + 1 + 0 + ... = 16.
		

Crossrefs

Programs

  • Magma
    [(&+[Floor(n/(k*(k+1)/2)): k in [1..100]]): n in [0..30]]; // G. C. Greubel, May 23 2018
  • Mathematica
    A069470[n_]:=Sum[Floor[(2*n)/(k*(1 + k))], {k, 1, Floor[1/2 + Sqrt[2*n]]}] (* Enrique Pérez Herrero, Apr 05 2010 *)
  • PARI
    for(n=0, 30, print1(sum(k=1, 100, floor(n/(k*(k+1)/2))), ", ")) \\ G. C. Greubel, May 23 2018
    

Formula

a(n) = a(n-1) + A007862(n).
It appears that limit((sum(floor((1/2)*n/(k*(k+1))), k=1..n))/n, n=infinity) = 1/2. - Stephen Crowley, Aug 12 2009
From Enrique Pérez Herrero, Apr 05 2010: (Start)
a(n) <= floor((2*n^2)/(1 + n)) = A004275(n).
a(n) <= floor((2*n*floor((1 + 2*sqrt(2*n))/2))/(1+floor((1+2*sqrt(2*n))/2))). (End)
G.f.: (1/(1 - x)) * Sum_{k>=1} x^(k*(k+1)/2)/(1 - x^(k*(k+1)/2)). - Ilya Gutkovskiy, Jul 11 2019

A204513 A204517(n)^2 = floor[A055859(n)/7]: Squares which written in base 7, with some digit appended, yield another square.

Original entry on oeis.org

0, 0, 0, 1, 9, 36, 289, 2304, 9216, 73441, 585225, 2340900, 18653761, 148644864, 594579456, 4737981889, 37755210249, 151020840996, 1203428746081, 9589674758400, 38358699033600, 305666163522721, 2435739633423369, 9742958533693476, 77638002106025089, 618668277214777344, 2474673108859109376, 19719746868766849921, 157139306672920022025, 628557226691680088100, 5008738066664673854881, 39912765226644470817024, 159651060906577883268096
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-7 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=7;for(n=0,200,issquare(n^2\b) & print1(n^2\b,","))
    
  • PARI
    A204513(n)=polcoeff((x^4 + 9*x^5 + 36*x^6 + 34*x^7 + 9*x^8 + 36*x^9 + x^10)/(1 - 255*x^3 + 255*x^6 - x^9+O(x^n)),n)

Formula

G.f. = (x^4 + 9*x^5 + 36*x^6 + 34*x^7 + 9*x^8 + 36*x^9 + x^10)/(1 - 255*x^3 + 255*x^6 - x^9)

A204577 Sqrt(floor[A204575(n)/2]), written in binary.

Original entry on oeis.org

0, 0, 10, 1100, 1000110, 110011000, 100101001010, 11011000100100, 10011101110001110, 1110010111100110000, 1010011101111110010010, 111101000000111000111100, 101100011100111010111010110
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).
Previous Showing 31-40 of 44 results. Next