cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A191612 Image of A008578 (the noncomposite numbers) under the "forming" transformation.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 18, 20, 24, 30, 36, 40, 42, 44, 48, 54, 60, 66, 68, 72, 78, 80, 84, 96, 100, 102, 104, 108, 112, 126, 128, 132, 138, 140, 150, 156, 162, 164, 168, 174, 180, 190, 192, 196, 198, 204, 216, 224, 228
Offset: 1

Views

Author

Jaroslav Krizek, Oct 16 2011

Keywords

Comments

We define a transformation T_f [b(n)] = [c(n)] - the index f means "forming" - of an increasing sequence b(n) of integers b(1), b(2), b(3), ..., b(k) which produces an increasing sequence c(n) of the same length, c(1), c(2), c(3), ..., c(k) such that c(1) = b(1), and for j>1, c(j) is the only integer b(j-1) < c(j) <= b(j), with (b(j)-b(j-1)) | c(j). We say b(n) is forming c(n).
An increasing sequence c(n) is called formed from the increasing sequence b(n) by T_f [b(n)] when there is an increasing sequence b(n) such that b(1) = c(1), for j > 1, b(j) is an integer c(j) <= b(j) < c(j+1) such that difference b(j) - b(j-1) divides c(j).
This transformation T_invf [c(n)] is an inverse of T_f [b(n)], but this inversion of c(n) back to b(n) may not be unique, and there are also increasing sequences c(n) which do not have an image T_invf [c(n)]. We call the latter sequences c(n) "unformed."
Each increasing sequences b(n) can be transform by transformation T_f [b(n)] but this does not apply to transformation T_invf [b(n)]. An increasing sequence c(n) is called totally formed if c(n) = T_f [c(n)] = T_invf [c(n)]. Each totally formed sequence is formed.
There are infinitely many formed, totally formed and unformed increasing sequences.
Examples of totally formed sequences: A047229, A004277, A002808, A000079, A000027.
Examples of formed, but not totally formed, sequences: A000225, A000295, A018252.
Examples of unformed sequences: A000040, A008578, A005117, A005408.

Examples

			a(10) = 20 because 20 is the only integer such that 19 = A008578(9) < 20 <= A008578(10) = 23 and simultaneously is multiple of difference A008578(10) - A008578(9) = 4.
		

Programs

  • Maple
    Tf := proc(L)
            local a,j,c ;
            a := [op(1,L)] ;
            while nops(a) < nops(L)-1 do
                    j := nops(a)+1 ;
                    for c from op(j-1,L)+1 to op(j,L) do
                            if (c mod ( op(j,L)-op(j-1,L) )) = 0 then
                                    a := [op(a),c] ;
                                    break;
                            end if;
                    end do:
            end do:
            a ;
    end proc:
    nonc := [seq(A008578(n),n=1..80)] ;
    Tf(nonc) ; # R. J. Mathar, Oct 27 2011

Formula

For n > 3, a(n) = A113709(n-2).

A229489 Conjecturally, possible differences between prime(k)^2 and the next prime for some k.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 16, 18, 22, 24, 28, 30, 34, 36, 40, 42, 46, 48, 52, 54, 58, 60, 64, 66, 70, 72, 76, 78, 82, 84, 88, 90, 94, 96, 100, 102, 106, 108, 112, 114, 118, 120, 124, 126, 130, 132, 136, 138, 142, 144, 148, 150, 154, 156, 160, 162, 166, 168, 172, 174
Offset: 1

Views

Author

T. D. Noe, Oct 21 2013

Keywords

Comments

Are there any missing terms? The first 10^7 primes were examined. All these differences occur for some k < 10^5. Note that the first differences of these terms is 1, 2, or 4.
The similarity to A047233 is understood by a comment in A091666. - R. J. Mathar, Oct 28 2013

Crossrefs

Cf. A000040 (primes), A001248 (primes squared).
Cf. A004277 (conjecturally, possible gaps between adjacent primes).
Cf. A091666 (prime greater than prime(n)^2).
Cf. A229488 (possible differences between prime(k)^2 and the previous prime).

Programs

  • Mathematica
    t = Table[p2 = Prime[k]^2; NextPrime[p2] - p2, {k, 100000}]; Take[Union[t], 60]
    NextPrime[#]-#&/@(Prime[Range[100000]]^2)//Union (* Harvey P. Dale, Apr 19 2020 *)

A238398 Numerators of inverse binomial transform of A198631(n)/A006519(n+1) with -1 instead of A198631(1)=1.

Original entry on oeis.org

1, -3, 2, -11, 4, -11, 6, -39, 8, -49, 10, 647, 12, -5487, 14, 929329, 16, -3202325, 18, 221930505, 20, -4722116563, 22, 968383680643, 24, -14717667114201, 26, 2093660879252563, 28, -86125672563201239, 30, 129848163681107300961, 32
Offset: 0

Views

Author

Paul Curtz, Feb 26 2014

Keywords

Comments

From modified fractional Euler numbers.
Inverse binomial transform:
1, -3/2, 2, -11/4, 4, -11/2, 6, -39/8, 8, -49/2, 10, 647/4, 12, -5487/2,... = a(n)/b(n). b(2n) = A004277(n).
Difference table of c(n) = 1, -1/2, 0, -1/4,... :
1, -1/2, 0, -1/4, 0, 1/2, 0,...
-3/2, 1/2, -1/4, 1/4, 1/2, -1/2, -17/8,...
2, -3/4, 1/2, 1/4, -1, -13/8, 17/4,...
-11/4, 5/4, -1/4, -5/4, -5/8, 47/8, 73/8,...
4, -3/2, -1, 5/8, 13/2, 13/4, -107/2,...
-11/2, 1/2, 13/8, 47/8, -13/4, -227/4, -227/8,
6, 9/8, 17/4, -73/8, -107/2, 227/8, 2957/4,...
etc.
c(n) + a(n)/b(n) = 2, -2, 2, -3, 4, -5, 6, -7, 8, -9,... = A233583(n+1) signed. (a(n) discovered in 2013)

Crossrefs

Cf. A235774.

Programs

  • Mathematica
    max = 40;(* b = A198631 *) b[0] = 1; b[1] = -1; b[n_] := Numerator[EulerE[n, 1]/(2^n-1)]; bb = Table[b[n]/2^IntegerExponent[n+1, 2], {n, 0, max}]; a[n_] := Differences[bb, n] // First // Numerator ; Table[a[n], {n, 0, max}]

A274922 a(n) = (-1)^n * n if n>0, a(0) = 1.

Original entry on oeis.org

1, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34, -35, 36, -37, 38, -39, 40, -41, 42, -43, 44, -45, 46, -47, 48, -49, 50, -51, 52, -53, 54, -55, 56, -57, 58, -59
Offset: 0

Views

Author

Michael Somos, Dec 28 2016

Keywords

Comments

This is a divisibility sequence.

Examples

			G.f. = 1 - x + 2*x^2 - 3*x^3 + 4*x^4 - 5*x^5 + 6*x^6 - 7*x^7 + 8*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 + x+x^2)/(1+2*x+x^2))); // G. C. Greubel, Jul 29 2018
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n n];
    a[ n_] := SeriesCoefficient[ (1 + x + x^2) / (1 + 2*x + x^2), {x, 0, n}];
    LinearRecurrence[{-2,-1},{1,-1,2},60] (* Harvey P. Dale, Mar 30 2019 *)
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * n)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + x + x^2) / (1 + 2*x + x^2) + x * O(x^n), n))};
    

Formula

Euler transform of length 3 sequence [-1, 2, -1].
a(n) = -b(n) where b() is multiplicative with b(2^e) = -(2^e) if e>0, b(p^e) = p^e otherwise.
E.g.f.: 1 - x * exp(-x).
G.f.: (1 + x + x^2) / (1 + 2*x + x^2).
G.f.: (1 - x) * (1 - x^3) / (1 - x^2)^2.
G.f.: 1 / (1 + x / (1 + x / (1 - x / (1 + x)))).
G.f.: 1 - x / (1 + x)^2 = 1 - x /(1 - x)^2 + 4*x^2 / (1 - x^2)^2.
a(n) = (-1)^n * A028310(n). a(2*n) = A004277(n). a(2*n + 1) = - A005408(n).
Convolution inverse of A106510.
A060576(n) = Sum_{k=0..n} binomial(n, k) * a(k).
A028310(n) = Sum_{k=0..n} binomial(n+1, k+1) * a(k).
a(n) = A038608(n), n>0. - R. J. Mathar, May 25 2020

A338329 First differences of A326118.

Original entry on oeis.org

1, 1, 3, 1, 3, 5, 7, 3, 5, 7, 9, 5, 7, 9, 11, 7, 9, 11, 13, 9, 11, 13, 15, 11, 13, 15, 17, 13, 15, 17, 19, 15, 17, 19, 21, 17, 19, 21, 23, 19, 21, 23, 25, 21, 23, 25, 27, 23, 25, 27, 29, 25, 27, 29, 31, 27, 29, 31, 33, 29, 31, 33, 35, 31, 33, 35, 37, 33, 35, 37, 39
Offset: 0

Views

Author

Stefano Spezia, Oct 23 2020

Keywords

Comments

It includes exclusively all the odd numbers (A005408). Except for 1, 3 and 5 that appear three times, each other odd number appears four times.

Crossrefs

Cf. A004277 (averages of the increasing runs), A005408, A326118.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{1,1,3,1,3,5,7,3},71]

Formula

O.g.f.: (1 + 2*x^2 - 2*x^3 + x^4 + 2*x^5 - 2*x^7)/((1 - x)^2*(1 + x + x^2 + x^3)).
E.g.f.: (3*exp(-x) + exp(x)*(7 + 2*x) - 6*cos(x) + 6*sin(x))/4 - 2*x - x^2.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 7.
a(n) = (7 + 2*n - 6*cos(n*Pi/2) + 3*(-1)^n + 6*sin(n*Pi/2))/4 for n > 2.

A340928 Least image of A001222 applied to the prime indices of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 4277 are {4,6,15} with images {2,2,2}, so a(4277) = 2.
The prime indices of 8303 are {8,8,9} with images {3,3,2}, so a(8303) = 2.
		

Crossrefs

Positions of 0's are A000079.
Positions of first appearances are A033844.
The version for maximum is A340691.
A003963 multiplies together the prime indices.
A026794 counts partitions by sum and minimum.
A056239 adds up the prime indices.
A061395 selects the greatest prime index.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    Table[If[n==1,0,Min@@PrimeOmega/@PrimePi/@First/@FactorInteger[n]],{n,100}]

A356639 Number of integer sequences b with b(1) = 1, b(m) > 0 and b(m+1) - b(m) > 0, of length n which transform under the map S into a nonnegative integer sequence. The transform c = S(b) is defined by c(m) = Product_{k=1..m} b(k) / Product_{k=2..m} (b(k) - b(k-1)).

Original entry on oeis.org

1, 1, 3, 17, 155, 2677, 73327, 3578339, 329652351
Offset: 1

Views

Author

Thomas Scheuerle, Aug 19 2022

Keywords

Comments

This sequence can be calculated by a recursive algorithm:
Let B1 be an array of finite length, the "1" denotes that it is the first generation. Let B1' be the reversed version of B1. Let C be the element-wise product C = B1 * B1'. Then B2 is a concatenation of taking each element of B1 and add all divisors of the corresponding element in C. If we start with B1 = {1} then we get this sequence of arrays: B2 = {2}, B3 = {3, 4, 6}, ... . a(n) is the length of the array Bn. In short the length of Bn+1 and so a(n+1) is the sum over A000005(Bn * Bn').
The transform used in the definition of this sequence is its own inverse, so if c = S(b) then b = S(c). The eigensequence is 2^n = S(2^n).
There exist some transformation pairs of infinite sequences in the database:
A026549 <--> A038754; A100071 <--> A001405; A058295 <--> A------;
A111286 <--> A098011; A093968 <--> A205825; A166447 <--> A------;
A079352 <--> A------; A082458 <--> A------; A008233 <--> A264635;
A138278 <--> A------; A006501 <--> A264557; A336496 <--> A------;
A019464 <--> A------; A062112 <--> A------; A171647 <--> A359039;
A279312 <--> A------; A031923 <--> A------.
These transformation pairs are conjectured:
A137326 <--> A------; A066332 <--> A300902; A208147 <--> A308546;
A057895 <--> A------; A349080 <--> A------; A019442 <--> A------;
A349079 <--> A------.
("A------" means not yet in the database.)
Some sequences in the lists above may need offset adjustment to force a beginning with 1,2,... in the transformation.
If we allowed signed rational numbers, further interesting transformation pairs could be observed. For example, 1/n will transform into factorials with alternating sign. 2^(-n) transforms into ones with alternating sign and 1/A000045(n) into A000045 with alternating sign.

Examples

			a(4) = 17. The 17 transformation pairs of length 4 are:
  {1, 2, 3, 4}  = S({1, 2, 6, 24}).
  {1, 2, 3, 5}  = S({1, 2, 6, 15}).
  {1, 2, 3, 6}  = S({1, 2, 6, 12}).
  {1, 2, 3, 9}  = S({1, 2, 6, 9}).
  {1, 2, 3, 12} = S({1, 2, 6, 8}).
  {1, 2, 3, 21} = S({1, 2, 6, 7}).
  {1, 2, 4, 5}  = S({1, 2, 4, 20}).
  {1, 2, 4, 6}  = S({1, 2, 4, 12}).
  {1, 2, 4, 8}  = S({1, 2, 4, 8}).
  {1, 2, 4, 12} = S({1, 2, 4, 6}).
  {1, 2, 4, 20} = S({1, 2, 4, 5}).
  {1, 2, 6, 7}  = S({1, 2, 3, 21}).
  {1, 2, 6, 8}  = S({1, 2, 3, 12}).
  {1, 2, 6, 9}  = S({1, 2, 3, 9}).
  {1, 2, 6, 12} = S({1, 2, 3, 6}).
  {1, 2, 6, 15} = S({1, 2, 3, 5}).
  {1, 2, 6, 24} = S({1, 2, 3, 4}).
b(1) = 1 by definition, b(2) = 1+1 as 1 has only 1 as divisor.
a(3) = A000005(b(2)*b(2)) = 3.
The divisors of b(2) are 1,2,4. So b(3) can be b(2)+1, b(2)+2 and b(2)+4.
a(4) = A000005((b(2)+1)*(b(2)+4)) + A000005((b(2)+2)*(b(2)+2)) + A000005((b(2)+4)*(b(2)+1)) = 17.
		

Crossrefs

A086461 Symmetric version of square array A086460.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 1, 1, 4, 6, 6, 4, 1, 1, 5, 8, 9, 8, 5, 1, 1, 6, 10, 12, 12, 10, 6, 1, 1, 7, 12, 15, 16, 15, 12, 7, 1, 1, 8, 14, 18, 20, 20, 18, 14, 8, 1, 1, 9, 16, 21, 24, 25, 24, 21, 16, 9, 1, 1, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 1, 1, 11, 20, 27, 32, 35, 36
Offset: 0

Views

Author

Paul Barry, Jul 21 2003

Keywords

Comments

Rows include A028310, A004277, A008486, A008574, A008706, A008458. Main diagonal is n^2+0^n (A000290, preceded by extra 1).

Examples

			Rows begin
  1 1 1 1 1 ...
  1 1 2 3 4 ...
  1 2 4 6 8 ...
  1 3 6 9 12 ...
  1 4 8 12 16 ...
As a triangle:
  {1},
  {1, 1},
  {1, 1, 1},
  {1, 2, 2, 1},
  {1, 3, 4, 3, 1},
  {1, 4, 6, 6, 4, 1},
  {1, 5, 8, 9, 8, 5, 1},
  {1, 6, 10, 12, 12, 10, 6, 1},
  {1, 7, 12, 15, 16, 15, 12, 7, 1},
  {1, 8, 14, 18, 20, 20, 18, 14, 8, 1},
  {1, 9, 16, 21, 24, 25, 24, 21, 16, 9, 1}
		

Programs

  • Mathematica
    t[n_, m_] = If[ n == 0 || n == m || m == 0, 1, n - m]*If[n == m || n == 0 || m == 0, 1, m]; Table[t[n, m], {n, 0, 11}, {m, 0, n}] // Flatten (* Roger L. Bagula, Sep 06 2008 *)

Formula

T(0, k)=T(n, 0)=1, T(n, k)=nk+0^n, n, k>0
Alternatively, triangle read by rows with formula t(n,m)=If[n == 0 || n == m || m == 0, 1, n - m]*If[n == m || n == 0 || m == 0, 1, m]. - Roger L. Bagula, Sep 06 2008

A130028 A129686 * A054523.

Original entry on oeis.org

1, 1, 1, 3, 0, 1, 3, 2, 0, 1, 6, 0, 1, 0, 1, 4, 3, 1, 1, 0, 1, 10, 0, 0, 0, 1, 0, 1, 6, 4, 1, 1, 0, 1, 0, 1, 12, 0, 2, 0, 0, 0, 1, 0, 1, 8, 6, 0, 1, 1, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, May 02 2007

Keywords

Comments

Row sums = A004277, 1 followed by even terms: (1, 2, 4, 6, 8, 10, ...).

Examples

			First few rows of the triangle:
   1;
   1, 1;
   3, 0, 1;
   3, 2, 0, 1;
   6, 0, 1, 0, 1;
   4, 3, 1, 1, 0, 1;
  10, 0, 0, 0, 1, 0, 1;
   6, 4, 1, 1, 0, 1, 0, 1;
  ...
		

Crossrefs

Formula

A129686 * A054523 as infinite lower triangular matrices, where A129686 = the alternate term operator.
Previous Showing 31-39 of 39 results.