cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 54 results. Next

A004444 Nimsum n + 3.

Original entry on oeis.org

3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12, 19, 18, 17, 16, 23, 22, 21, 20, 27, 26, 25, 24, 31, 30, 29, 28, 35, 34, 33, 32, 39, 38, 37, 36, 43, 42, 41, 40, 47, 46, 45, 44, 51, 50, 49, 48, 55, 54, 53, 52, 59, 58, 57, 56, 63, 62, 61, 60, 67, 66, 65, 64, 71
Offset: 0

Views

Author

Keywords

Comments

The same as A120634 except for first 3 terms. - Pietro Battiston, Jan 19 2008
Permutation of the nonnegative integers. - Wesley Ivan Hurt, Apr 06 2016

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60.
  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.

Crossrefs

Cf. A004442 (nimsum n+1), A004443 (nimsum n+2), A120634.

Programs

  • Magma
    [n + (-1)^n + 2*(-1)^Floor(n/2): n in [0..100]]; // Wesley Ivan Hurt, Apr 06 2016
    
  • Maple
    A004444:=n->n+(-1)^n+2*(-1)^floor(n/2): seq(A004444(n), n=0..50); # Wesley Ivan Hurt, Apr 06 2016
  • Mathematica
    CoefficientList[Series[(4x^4-x^3-x^2-x+3)/((x-1)^2(x+1) (x^2+1)), {x,0,70}],x] (* Harvey P. Dale, Mar 24 2011 *)
    Table[n + (-1)^n + 2 (-1)^Floor[n/2], {n, 0, 100}] (* Wesley Ivan Hurt, Apr 06 2016 *)
  • PARI
    Vec((4*x^4-x^3-x^2-x+3)/((x-1)^2*(x+1)*(x^2+1)) + O(x^90)) \\ Michel Marcus, Apr 06 2016
    
  • Python
    def a(n): return n^3
    print([a(n) for n in range(69)]) # Michael S. Branicky, Jan 23 2022

Formula

G.f.: (4*x^4-x^3-x^2-x+3)/((x-1)^2*(x+1)*(x^2+1)). - Ralf Stephan, Nov 01 2003
a(n) = n + (-1)^n + 2*(-1)^floor(n/2). - Mitchell Harris, Jan 10 2005
From Wesley Ivan Hurt, Apr 06 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
a(n) = n + (-1)^n + 2*(-1)^((2*n-1+(-1)^n)/4).
a(n) = A004442(A004443(n)) = A004443(A004442(n)).
a(a(n)) = n; n+a(n) = A004442(n) + A004443(n). (End)
a(n) = n XOR 3. - Falk Hüffner, Jan 23 2022

Extensions

More terms from Michael S. Branicky, Jan 23 2022

A106449 Square array (P(x) XOR P(y))/gcd(P(x),P(y)) where P(x) and P(y) are polynomials with coefficients in {0,1} given by the binary expansions of x and y, and all calculations are done in polynomial ring GF(2)[X], with the result converted back to a binary number, and then expressed in decimal. Array is symmetric, and is read by antidiagonals.

Original entry on oeis.org

0, 3, 3, 2, 0, 2, 5, 1, 1, 5, 4, 3, 0, 3, 4, 7, 7, 7, 7, 7, 7, 6, 2, 2, 0, 2, 2, 6, 9, 5, 3, 1, 1, 3, 5, 9, 8, 5, 4, 1, 0, 1, 4, 5, 8, 11, 11, 11, 3, 1, 1, 3, 11, 11, 11, 10, 4, 6, 3, 2, 0, 2, 3, 6, 4, 10, 13, 9, 7, 13, 13, 1, 1, 13, 13, 7, 9, 13, 12, 7, 8, 7, 4, 7, 0, 7, 4, 7, 8, 7, 12, 15, 15, 5
Offset: 1

Views

Author

Antti Karttunen, May 21 2005

Keywords

Comments

Array is read by antidiagonals, with row x and column y ranging as: (x,y) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...
"Coded in binary" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where a(k)=0 or 1).
This is GF(2)[X] analog of A106448. In the definition XOR means addition in polynomial ring GF(2)[X], that is, a carryless binary addition, A003987.

Examples

			The top left 17 X 17 corner of the array:
        1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17
     +--------------------------------------------------------------------
   1 :  0,  3,  2,  5,  4,  7,  6,  9,  8, 11, 10, 13, 12, 15, 14, 17, 16, ...
   2 :  3,  0,  1,  3,  7,  2,  5,  5, 11,  4,  9,  7, 15,  6, 13,  9, 19, ...
   3 :  2,  1,  0,  7,  2,  3,  4, 11,  6,  7,  8,  5, 14, 13,  4, 19, 14, ...
   4 :  5,  3,  7,  0,  1,  1,  3,  3, 13,  7, 15,  2,  9,  5, 11,  5, 21, ...
   5 :  4,  7,  2,  1,  0,  1,  2, 13,  4,  3, 14,  7,  8, 11,  2, 21,  4, ...
   6 :  7,  2,  3,  1,  1,  0,  1,  7,  5,  2, 13,  3, 11,  4,  7, 11, 13, ...
   7 :  6,  5,  4,  3,  2,  1,  0, 15,  2, 13, 12, 11, 10,  3,  8, 23, 22, ...
   8 :  9,  5, 11,  3, 13,  7, 15,  0,  1,  1,  3,  1,  5,  3,  7,  3, 25, ...
   9 :  8, 11,  6, 13,  4,  5,  2,  1,  0,  1,  2,  3,  4,  1,  2, 25,  8, ...
  10 : 11,  4,  7,  7,  3,  2, 13,  1,  1,  0,  1,  1,  7,  2,  1, 13,  7, ...
  11 : 10,  9,  8, 15, 14, 13, 12,  3,  2,  1,  0,  7,  6,  5,  4, 27, 26, ...
  12 : 13,  7,  5,  2,  7,  3, 11,  1,  3,  1,  7,  0,  1,  1,  1,  7, 11, ...
  13 : 12, 15, 14,  9,  8, 11, 10,  5,  4,  7,  6,  1,  0,  3,  2, 29, 28, ...
  14 : 15,  6, 13,  5, 11,  4,  3,  3,  1,  2,  5,  1,  3,  0,  1, 15, 31, ...
  15 : 14, 13,  4, 11,  2,  7,  8,  7,  2,  1,  4,  1,  2,  1,  0, 31,  2, ...
  16 : 17,  9, 19,  5  21, 11, 23,  3, 25, 13, 27,  7, 29, 15, 31,  0,  1, ...
  17 : 16, 19, 14, 21,  4, 13, 22, 25,  8,  7, 26, 11, 28, 31,  2,  1,  0, ...
		

Crossrefs

Row 1: A004442 (without its initial term), row 2: A106450 (without its initial term).

Programs

  • PARI
    up_to = 105;
    A106449sq(a,b) = { my(Pa=Pol(binary(a))*Mod(1, 2), Pb=Pol(binary(b))*Mod(1, 2)); fromdigits(Vec(lift((Pa+Pb)/gcd(Pa,Pb))),2); }; \\ Note that XOR is just + in GF(2)[X] world.
    A106449list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A106449sq(col,(a-(col-1))))); (v); };
    v106449 = A106449list(up_to);
    A106449(n) = v106449[n]; \\ Antti Karttunen, Oct 21 2019

Formula

A(x, y) = A280500(A003987(x, y), A091255(x, y)), that is, A003987(x, y) = A048720(A(x, y), A091255(x, y)).

A011264 In the prime factorization of n, increment even powers and decrement odd powers (multiplicative).

Original entry on oeis.org

1, 1, 1, 8, 1, 1, 1, 4, 27, 1, 1, 8, 1, 1, 1, 32, 1, 27, 1, 8, 1, 1, 1, 4, 125, 1, 9, 8, 1, 1, 1, 16, 1, 1, 1, 216, 1, 1, 1, 4, 1, 1, 1, 8, 27, 1, 1, 32, 343, 125, 1, 8, 1, 9, 1, 4, 1, 1, 1, 8, 1, 1, 27, 128, 1, 1, 1, 8, 1, 1, 1, 108, 1, 1, 125, 8, 1, 1, 1, 32, 243, 1, 1, 8, 1, 1, 1, 4, 1, 27, 1, 8, 1, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a011264 n = product $ zipWith (^)
                          (a027748_row n) (map a004442 $ a124010_row n)
    -- Reinhard Zumkeller, Jun 23 2013
    
  • Mathematica
    f[n_, k_] := n^(If[EvenQ[k], k + 1, k - 1]); Table[Times @@ f @@@ FactorInteger[n], {n, 94}] (* Jayanta Basu, Aug 14 2013 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^if(f[i,2]%2, f[i,2]-1, f[i,2]+1));} \\ Amiram Eldar, Jan 07 2023

Formula

a(n) = Product_{k=1..A001221(n)} (A027748(n,k)^A004442(A124010(n,k))). - Reinhard Zumkeller, Jun 23 2013
From Amiram Eldar, Jan 07 2023: (Start)
a(n) = n^2/A011262(n).
a(n) = n*A007947(n)/A007913(n)^2.
a(n) = n*A336643(n)/A007913(n).
a(n) = A356191(n)/A007913(n). (End)
Dirichlet g.f.: zeta(2*s-2) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-3) - 1/p^(2*s-2)). - Amiram Eldar, Sep 21 2023
From Vaclav Kotesovec, May 06 2025: (Start)
Dirichlet g.f.: zeta(2*s-3) * Product_{p prime} (1 + (p-1)*p^(3-2*s) + p^(1-s) - (p-1)*(p^s + p^3)/(p^(2*s) - p^2)).
Sum_{k=1..n} a(k) ~ n^2/4. (End)

A079354 a(1)=1; a(n)=a(n-1)-1 if n is already in the sequence, a(n)=a(n-1)+3 otherwise.

Original entry on oeis.org

1, 4, 7, 6, 9, 8, 7, 6, 5, 8, 11, 14, 17, 16, 19, 18, 17, 16, 15, 18, 21, 24, 27, 26, 29, 28, 27, 26, 25, 28, 31, 34, 37, 36, 39, 38, 37, 36, 35, 38, 41, 44, 47, 46, 49, 48, 47, 46, 45, 48, 51, 54, 57, 56, 59, 58, 57, 56, 55, 58, 61, 64, 67, 66, 69, 68, 67, 66, 65, 68, 71, 74, 77
Offset: 1

Views

Author

Benoit Cloitre and N. J. A. Sloane, Feb 14 2003

Keywords

Comments

Starting with a(1)=0 and same definition, a(n)=n+(-1)^n (cf. A004442)

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{1,4,7,6,9,8,7,6,5,8,11},80] (* Harvey P. Dale, Feb 01 2015 *)
  • PARI
    Vec(x*(2*x^10+3*x^9-x^8-x^7-x^6-x^5+3*x^4-x^3+3*x^2+3*x+1)/(x^11-x^10-x+1) + O(x^100)) \\ Colin Barker, Oct 16 2013

Formula

a(n)-n is periodic with period (0, 2, 4, 2, 4, 2, 0, -2, -4, -2) of length 10.
a(10t+i) = 10t+c_i, 1<=i<=10, c_i=(1, 4, 7, 6, 9, 8, 7, 6, 5, 8). a(n) = n iff n == 1 or 7 (mod 10).
G.f.: x*(2*x^10+3*x^9-x^8-x^7-x^6-x^5+3*x^4-x^3+3*x^2+3*x+1) / (x^11-x^10-x+1). - Colin Barker, Oct 16 2013

A080413 Take the rightmost three binary digits of n (for n<4 padded with leading zeros) and rotate left 1 digit.

Original entry on oeis.org

0, 2, 4, 6, 1, 3, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15, 16, 18, 20, 22, 17, 19, 21, 23, 24, 26, 28, 30, 25, 27, 29, 31, 32, 34, 36, 38, 33, 35, 37, 39, 40, 42, 44, 46, 41, 43, 45, 47, 48, 50, 52, 54, 49, 51, 53, 55, 56, 58, 60, 62, 57, 59, 61, 63, 64, 66, 68, 70, 65, 67, 69, 71, 72
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 17 2003

Keywords

Examples

			a(2)=a('010')='100'=4; a(3)=a('011')='110'=6; a(4)=a('100')='001'=1; a(5)=a('101')='011'=3;
a(20)=a('10'100')='10'001'=17; a(21)=a('10'101')='10'011'=19.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 4, 6, 1, 3, 5, 7, 8}, 73] (* Georg Fischer, Jul 03 2025 *)
  • Python
    def A080413(n): return ((n&3)<<1)+bool(n&4)+(n&-8) # Chai Wah Wu, Jan 21 2023

Formula

For n>7: a(n) = 8*floor(n/8) + a(n mod 8).
A permutation of natural numbers with inverse = A080414: A080414(a(n))=n, a(A080414(n))=n.
a(a(n))=A080414(n), A080414(A080414(n))=a(n), a(a(a(n)))=n.

A080414 Take the rightmost three binary digits of n (for n<4 padded with leading zeros) and rotate right 1 digit.

Original entry on oeis.org

0, 4, 1, 5, 2, 6, 3, 7, 8, 12, 9, 13, 10, 14, 11, 15, 16, 20, 17, 21, 18, 22, 19, 23, 24, 28, 25, 29, 26, 30, 27, 31, 32, 36, 33, 37, 34, 38, 35, 39, 40, 44, 41, 45, 42, 46, 43, 47, 48, 52, 49, 53, 50, 54, 51, 55, 56, 60, 57, 61, 58, 62, 59, 63, 64, 68, 65, 69, 66, 70, 67, 71, 72
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 17 2003

Keywords

Examples

			a(2)=a('010')='001'=1; a(3)=a('011')='101'=5; a(4)=a('100')='010'=2; a(5)=a('101')='110'=6;
a(20)=a('10'100')='10'010'=18; a(21)=a('10'101')='10'110'=22.
		

Crossrefs

Programs

  • Mathematica
    r3bd[n_]:=Module[{a,b},{a,b}=Reverse[TakeDrop[IntegerDigits[n,2],-3]];FromDigits[Join[a,RotateRight[b]],2]]; Join[{0,4,1,5},Table[r3bd[n],{n,4,80}]] (* Harvey P. Dale, Jul 30 2021 *)
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 4, 1, 5, 2, 6, 3, 7, 8}, 73] (* Georg Fischer, Jul 03 2025 *)
  • Python
    def A080414(n): return ((n&6)>>1)+((n&1)<<2)+(n&-8) # Chai Wah Wu, Jan 21 2023

Formula

For n>7: a(n) = 8*floor(n/8) + a(n mod 8).
A permutation of natural numbers with inverse A080413: A080413(a(n))=n, a(A080413(n))=n.
a(a(n))=A080413(n), A080413(A080413(n))=a(n), a(a(a(n)))=n.

A163541 The absolute direction (0=east, 1=south, 2=west, 3=north) taken by the type I Hilbert's Hamiltonian walk A163359 at the step n.

Original entry on oeis.org

1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 3, 3, 2, 1, 2, 2, 3, 0, 3, 2, 3, 0, 0, 1, 0, 3, 0, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 1, 0, 3, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 01 2009

Keywords

Comments

Taking every sixteenth term gives the same sequence: (and similarly for all higher powers of 16 as well): a(n) = a(16*n).

Crossrefs

a(n) = A163541(A008598(n)) = A004442(A163540(n)). See also A163543.

Programs

  • Mathematica
    HC = {L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]},
    R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]},
    R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]},
    L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]},
    F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]},
    F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}};
    a[1] = L[0]; Map[(a[n_ /; IntegerQ[(n - #)/16]] := Part[Flatten[a[(n + 16 - #)/16]/.HC/.HC],#]) &, Range[16]];
    Part[FoldList[Mod[Plus[#1, #2], 4] &, 0, a[#] & /@ Range[4^4]/.{F[n_]:>0,L[n_]:>1,R[n_]:>-1}], 2 ;; -1] (* Bradley Klee, Aug 07 2015 *)
  • Scheme
    (define (A163541 n) (modulo (+ 3 (A163538 n) (A163539 n) (abs (A163538 n))) 4))

Formula

a(n) = A010873(A163538(n) + A163539(n) + abs(A163538(n)) + 3).

A163980 a(n) = 2*n + (-1)^n.

Original entry on oeis.org

1, 5, 5, 9, 9, 13, 13, 17, 17, 21, 21, 25, 25, 29, 29, 33, 33, 37, 37, 41, 41, 45, 45, 49, 49, 53, 53, 57, 57, 61, 61, 65, 65, 69, 69, 73, 73, 77, 77, 81, 81, 85, 85, 89, 89, 93, 93, 97, 97, 101, 101, 105, 105, 109, 109, 113, 113, 117, 117, 121, 121, 125, 125, 129, 129, 133
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 09 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 1, -1}, {1, 5, 5}, 50] (* or *) Table[2*n + (-1)^n, {n,1,50}] (* G. C. Greubel, Aug 24 2017 *)
  • PARI
    a(n)=n+n+(-1)^n \\ Charles R Greathouse IV, Jun 09 2011

Formula

a(n) = A005843(n) - (-1)^A001477(n).
a(n) = 2*A000027(n) + (-1)^A000027(n).
a(n) = A005843(n) + A033999(n).
From R. J. Mathar, Aug 21 2009: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(1+4*x-x^2)/((1+x)*(1-x)^2). (End)
a(n) = 4*n - 2 - a(n-1), with a(1)=1. - Vincenzo Librandi, Nov 30 2010
E.g.f.: (2*x+1)*cosh(x) +(2*x-1)* sinh(x) -1. - G. C. Greubel, Aug 24 2017
Sum_{n>=1} 1/a(n)^2 = Pi^2/8 + G - 1, where G is Catalan's constant (A006752). - Amiram Eldar, Aug 21 2022

Extensions

Link by Charles R Greathouse IV, Mar 25 2010

A174239 a(n) = (3*n + 1 + (-1)^n*(n+3))/4.

Original entry on oeis.org

1, 0, 3, 1, 5, 2, 7, 3, 9, 4, 11, 5, 13, 6, 15, 7, 17, 8, 19, 9, 21, 10, 23, 11, 25, 12, 27, 13, 29, 14, 31, 15, 33, 16, 35, 17, 37, 18, 39, 19, 41, 20, 43, 21, 45, 22, 47, 23, 49, 24, 51, 25, 53, 26, 55, 27, 57, 28, 59, 29, 61, 30, 63, 31, 65, 32, 67, 33, 69, 34, 71, 35, 73, 36, 75, 37, 77, 38, 79, 39, 81
Offset: 0

Views

Author

Paul Curtz, Mar 13 2010

Keywords

Comments

Obtained from A026741 by swapping pairs of consecutive entries.
The main diagonal of an array with this sequence in the top row and further rows defined by the first differences of their previous row is essentially 1 followed by 3*A045623(.):
1, 0, 3, 1, 5, 2, 7, 3, 9, 4, 11, 5, 13, 6, 15, 7, 17, 8, ...
-1, 3, -2, 4, -3, 5, -4, 6, -5, 7, -6, 8, -7, 9, -8, 10, -9, ...
4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, ...
-9, 11, -13, 15, -17, 19, -21, 23, -25, 27, -29, 31, ...
20, -24, 28, -32, 36, -40, 44, -48, 52, -56, 60, -64, ...
-44, 52, -60, 68, -76, 84, -92, 100, -108, 116, -124, 132, ...
96, -112, 128, -144, 160, -176, 192, -208, 224, -240, ...
Also, numerator of (Nimsum n+1)/2 = A004442(n)/2. - Wesley Ivan Hurt, Mar 21 2015

Crossrefs

Cf. A004442.

Programs

Formula

a(2n) = 2n+1; a(2n+1) = n.
a(n) = 2*a(n-2) - a(n-4).
a(2n+1) - 2*a(2n) = -A016789(n+1).
a(2n+2) - 2*a(2n+1) = 3.
G.f.: ( 1+x^2+x^3 ) / ( (x-1)^2*(1+x)^2 ). - R. J. Mathar, Feb 07 2011

A261098 Row 1 of A261096.

Original entry on oeis.org

1, 0, 4, 5, 2, 3, 7, 6, 10, 11, 8, 9, 18, 19, 20, 21, 22, 23, 12, 13, 14, 15, 16, 17, 25, 24, 28, 29, 26, 27, 31, 30, 34, 35, 32, 33, 42, 43, 44, 45, 46, 47, 36, 37, 38, 39, 40, 41, 49, 48, 52, 53, 50, 51, 55, 54, 58, 59, 56, 57, 66, 67, 68, 69, 70, 71, 60, 61, 62, 63, 64, 65, 96, 97, 98, 99, 100, 101
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

Equally, column 1 of A261097.
Take the n-th (n>=0) permutation from the list A055089 (A195663), change 1 to 2 and 2 to 1 to get another permutation, and note its rank in the same list to obtain a(n).
Self-inverse permutation of nonnegative integers.

Examples

			In A195663 the permutation with rank 12 is [1,3,4,2], and swapping the elements 1 and 2 we get permutation [2,3,4,1], which is listed in A195663 as the permutation with rank 18, thus a(12) = 18.
		

Crossrefs

Row 1 of A261096, column 1 of A261097.
Cf. also A004442.
Related permutations: A060119, A060126, A261218.

Formula

a(n) = A261096(1,n).
By conjugating related permutations:
a(n) = A060119(A261218(A060126(n))).
Previous Showing 21-30 of 54 results. Next