cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A176355 Periodic sequence: Repeat 6, 1.

Original entry on oeis.org

6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6
Offset: 0

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Interleaving of A010722 and A000012.
Also continued fraction expansion of 3+sqrt(15).
Also decimal expansion of 61/99.
Essentially first differences of A047335.
Binomial transform of 6 followed by A166577 without initial terms 1, 4.
Inverse binomial transform of A005009 preceded by 6.

Examples

			0.6161616161616161616161616161616161616161...
		

Crossrefs

Cf. A010722 (all 6's sequence), A000012 (all 1's sequence), A092294 (decimal expansion of 3+sqrt(15)), A010687 (repeat 1, 6), A047335 (congruent to 0 or 6 mod 7), A166577, A005009 (7*2^n).

Programs

  • Magma
    &cat[ [6, 1]: n in [0..52] ];
    
  • Magma
    [(7+5*(-1)^n)/2: n in [0..104]];
  • Mathematica
    PadRight[{},120,{6,1}] (* Harvey P. Dale, Apr 12 2018 *)

Formula

G.f.: (6 + x)/(1 - x^2).
a(n) = (7 + 5*(-1)^n)/2.
a(n) = a(n-2) for n>1, a(0)=6, a(1)=1.
a(n) = -a(n-1)+7 for n>0, a(0)=6.
a(n) = 6*((n+1) mod 2) + (n mod 2).
a(n) = A010687(n+1).
a(n) = 13^n mod 7. - Vincenzo Librandi, Jun 01 2016
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2^e) = 6, and a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(1+5/2^s). (End)
E.g.f.: 6*cosh(x) + sinh(x). - Stefano Spezia, Feb 09 2025

A204543 Number of (n+1)X2 0..1 arrays with permanents of 2X2 subblocks differing from neighboring permanents.

Original entry on oeis.org

16, 26, 41, 56, 80, 112, 162, 224, 322, 448, 646, 896, 1290, 1792, 2582, 3584, 5162, 7168, 10326, 14336, 20650, 28672, 41302, 57344, 82602, 114688, 165206, 229376, 330410, 458752, 660822, 917504, 1321642, 1835008, 2643286, 3670016, 5286570
Offset: 1

Views

Author

R. H. Hardin Jan 16 2012

Keywords

Examples

			Some solutions for n=8
..1..1....1..1....1..1....0..0....0..1....0..0....1..1....1..0....0..1....1..0
..1..0....0..1....1..0....0..1....1..0....1..1....1..0....1..0....1..0....0..1
..1..0....0..1....1..0....1..1....1..0....0..1....1..0....1..1....1..0....0..1
..1..1....1..1....0..1....1..1....0..1....0..1....0..1....1..1....1..1....1..0
..1..1....1..1....0..1....1..0....0..1....1..1....0..1....1..0....1..1....1..0
..0..1....0..1....1..1....1..0....1..1....1..1....1..1....1..0....0..1....0..1
..0..1....0..1....1..1....0..1....1..1....0..1....1..1....1..1....0..1....0..1
..1..0....1..0....0..1....0..1....0..1....0..1....1..0....1..1....1..1....1..1
..1..0....0..0....0..1....1..0....0..0....1..1....0..0....1..0....0..0....0..0
		

Crossrefs

Even terms are A005009(n/2+1) for n>=4

Formula

Empirical: a(n) = a(n-2) +2*a(n-4) for n>6
Empirical: a(2k)=14*2^k for k>1

A213255 2^(n-1) - floor((2^(n-1) - 1)/(n-1)).

Original entry on oeis.org

1, 3, 6, 13, 26, 54, 110, 225, 456, 922, 1862, 3755, 7562, 15214, 30584, 61441, 123362, 247581, 496694, 996148, 1997288, 4003654, 8023886, 16078166, 32212255, 64527754, 129246702, 258848476, 518358122, 1037950430, 2078209982, 4160749569, 8329633544
Offset: 2

Views

Author

Arkadiusz Wesolowski, Jun 07 2012

Keywords

Comments

Lower bounds of the decycling numbers of n-cubes for n >= 9.

Examples

			a(8) = 110 because 2^7 - (2^7 - 1)/7 = 109.8571428571....
		

Crossrefs

Cf. A005009.

Programs

  • Magma
    [Ceiling(2^(n-1)-(2^(n-1)-1)/(n-1)) : n in [2..34]];
    
  • Mathematica
    Table[Ceiling[2^(n - 1) - (2^(n - 1) - 1)/(n - 1)], {n, 2, 34}]
  • PARI
    for(n=2, 34, print1(ceil(2^(n-1)-(2^(n-1)-1)/(n-1)), ", "))

Formula

a(n) = 2^(n-1) - floor((2^(n-1) - 1)/(n-1)).
a(n) = ceiling(2^(n-1) - (2^(n-1) - 1)/(n-1)).

A275788 a(0) = 0, a(n+1) = 2*a(n) + (-1)^floor(n/3).

Original entry on oeis.org

0, 1, 3, 7, 13, 25, 49, 99, 199, 399, 797, 1593, 3185, 6371, 12743, 25487, 50973, 101945, 203889, 407779, 815559, 1631119, 3262237, 6524473, 13048945, 26097891, 52195783, 104391567, 208783133, 417566265, 835132529, 1670265059, 3340530119, 6681060239
Offset: 0

Views

Author

Paul Curtz, Aug 09 2016

Keywords

Comments

a(n) and its successive differences:
0, 1, 3, 7, 13, 25, 49, ...
1, 2, 4, 6, 12, 24, 50, 100, ...
1, 2, 2, 6, 12, 26, 50, 100, 198, ...
1, 0, 4, 6, 14, 24, 50, 98, 200, 398, ...
-1, 4, 2, 8, 10, 26, 48, 102, 198, 400, 794, ...
5, -2, 6, 2, 16, 22, 54, 96, 202, 394, 800, 1590, ...
-7, 8, -4, 14, 6, 32, 42, 106, 192, 406, 790, 1600, 3178, ...
... .
Each row has the recurrence a(n) + a(n+3) = 7*2^n.
Main diagonal: 2*A001045(n).
Upper diagonals: A084214(n+1), 3*2^n, ... .
Subdiagonals: 2^n, A078008(n), A084214(n+1), -2^n, ... .
a(-n) = 0, 1/2, 3/4, 7/8, -1/16, -17/32, -49/64, 15/128, ... .
b(n), numerators of a(-n), and first differences:
0, 1, 3, 7, -1, -17, -49, 15, 143, 399, -113, -1137, ...
1, 2, 4, -8, -16, -32, 64, 128, 256, -512, -1024, ... = A000079(n)*A130151(n), not in the OEIS.

Examples

			a(1)=2*0+1=1, a(2)=2*1+1=3, a(2)=2*3+1=7, a(3)=2*7-1=13, a(4)=2*13-1=25, ... .
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 + x + x^2)/((1 + x) (1 - 2 x) (1 - x + x^2)), {x, 0, 33}], x] (* Michael De Vlieger, Aug 11 2016 *)
    LinearRecurrence[{2,0,-1,2}, {0, 1, 3, 7}, 25] (* G. C. Greubel, Aug 16 2016 *)
  • PARI
    concat(0, Vec(x*(1+x+x^2)/((1+x)*(1-2*x)*(1-x+x^2)) + O(x^40))) \\ Colin Barker, Aug 10 2016

Formula

From Colin Barker, Aug 09 2016: (Start)
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) for n>3.
G.f.: x*(1 + x + x^2) / ((1+x)*(1-2*x)*(1-x+x^2)).
(End)
a(n+3) = 7*2^n - a(n), a(0)=0, a(1)=1, a(2)=3.

Extensions

More terms from Colin Barker, Aug 10 2016

A365062 Enumeration of | Sort_n(123,321) |.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 7168, 14336, 28672, 57344, 114688, 229376, 458752, 917504, 1835008, 3670016, 7340032, 14680064, 29360128, 58720256, 117440512, 234881024, 469762048, 939524096, 1879048192, 3758096384, 7516192768, 15032385536
Offset: 0

Views

Author

Michael De Vlieger, Aug 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Array[If[# <= 3, 2^(# - 1), 7*2^(# - 4)] &, 30]

Formula

a(0) = 1, a(n) = 2^(n-1) for n = 1..3, a(n) = 7*2^(n-4) for n > 3.
From Chai Wah Wu, Aug 24 2023: (Start)
a(n) = 2*a(n-1) for n > 4.
G.f.: (x^4 + x - 1)/(2*x - 1). (End)

A220753 Expansion of (1+4*x+5*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)).

Original entry on oeis.org

1, 4, 8, 11, 22, 25, 50, 53, 106, 109, 218, 221, 442, 445, 890, 893, 1786, 1789, 3578, 3581, 7162, 7165, 14330, 14333, 28666, 28669, 57338, 57341, 114682, 114685, 229370, 229373, 458746, 458749, 917498, 917501, 1835002, 1835005, 3670010, 3670013
Offset: 0

Views

Author

Philippe Deléham, Apr 13 2013

Keywords

Crossrefs

Programs

  • Magma
    m:=41; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+4*x+5*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)))); // Bruno Berselli, Apr 13 2013
  • Mathematica
    Table[7 2^Floor[n/2] - (3/2) (3 + (-1)^n), {n, 0, 40}] (* Bruno Berselli, Apr 13 2013 *)
    LinearRecurrence[{0, 3, 0, -2}, {1, 4, 8, 11}, 40] (* T. D. Noe, Apr 17 2013 *)

Formula

G.f.: (1+4*x+5*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)).
a(2n) = 7*2^n - 6 = A048489(n) = A063757(2n) = A005009(n)-6.
a(2n+1) = 7*2^n - 3 = A048489(n) + 3 = A063757(2n+1) - 3*A000225(n) = A005009(n)-3.
a(n) = a(n-1)*2 if n even.
a(n) = a(n-1)+3 if n odd.
a(n) = 3*a(n-2) - 2*a(n-4) with a(0)=1, a(1)=4, a(2)=8, a(3)=11.
a(n) = 7*2^floor(n/2) - (3/2)*(3+(-1)^n).
a(n) = A047290(A083416(n+1)). [Bruno Berselli, Apr 13 2013]
Previous Showing 41-46 of 46 results.