Original entry on oeis.org
0, 1, 1, 5, 7, 23, 37, 101, 175, 431, 781, 1805, 3367, 7463, 14197, 30581, 58975, 124511, 242461, 504605, 989527, 2038103, 4017157, 8211461, 16245775, 33022991, 65514541, 132623405, 263652487, 532087943, 1059392917, 2133134741, 4251920575, 8546887871
Offset: 0
-
I:=[0,1,1]; [n le 3 select I[n] else 2*Self(n-1) +3*Self(n-2) -6*Self(n-3): n in [1..40]]; // G. C. Greubel, Sep 10 2023
-
LinearRecurrence[{2,3,-6}, {0,1,1}, 50] (* G. C. Greubel, Jul 01 2016 *)
-
def A167936(n): return (1<>1) # Chai Wah Wu, Nov 14 2023
-
def A167936(n): return 2^n - ((n+1)%2)*3^(n//2) - (n%2)*3^((n-1)//2)
[A167936(n) for n in range(41)] # G. C. Greubel, Sep 10 2023
A016197
a(n) = 12^n - 11^n.
Original entry on oeis.org
0, 1, 23, 397, 6095, 87781, 1214423, 16344637, 215622815, 2801832661, 35979939623, 457696700077, 5777672071535, 72470493235141, 904168630965623, 11229773405170717, 138934529031464255, 1713164078241143221
Offset: 0
Cf. k^n-(k-1)^n:
A000225 (k=2),
A001047 (k=3),
A005061 (k=4),
A005060 (k=5),
A005062 (k=6),
A016169 (k=7),
A016177 (k=8),
A016185 (k=9),
A016189 (k=10),
A016195 (k=11), this sequence (k=12).
A051589
Number of 5xn binary matrices such that any 2 rows have a common 1.
Original entry on oeis.org
0, 1, 63, 3367, 167835, 7803391, 339133803, 13887495007, 541044196875, 20237096702431, 732455240043243, 25820836854042847, 891331324715015115, 30260208833985800671, 1013882831306569043883, 33620617443978687281887, 1105857774681062127612555
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..670
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
-
List([0..20], n-> 32^n-10*24^n+30*20^n-5*18^n+5*17^n-70*16^n-30*15^n +135*14^n +30*13^n-140*12^n-2*11^n+130*10^n-110*9^n+45*8^n-10*7^n +6^n); # G. C. Greubel, Nov 12 2019
-
[32^n-10*24^n+30*20^n-5*18^n+5*17^n-70*16^n-30*15^n +135*14^n +30*13^n-140*12^n-2*11^n+130*10^n-110*9^n+45*8^n-10*7^n +6^n: n in [0..20]]; // Vincenzo Librandi, Sep 18 2018
-
A051589(n):=32^n -10*24^n +30*20^n -5*18^n +5*17^n -70*16^n -30*15^n + 135*14^n +30*13^n -140*12^n -2*11^n +130*10^n -110*9^n +45*8^n -10*7^n +6^n; seq(A051589(n), n=0..20); # G. C. Greubel, Nov 12 2019
-
Table[32^n -10*24^n +30*20^n -5*18^n +5*17^n -70*16^n -30*15^n +135*14^n +30*13^n -140*12^n -2*11^n +130*10^n -110*9^n +45*8^n -10*7^n +6^n, {n, 0, 30}] (* Vincenzo Librandi, Sep 18 2018 *)
-
vector(21, n, m=n-1; 32^m -10*24^m +30*20^m -5*18^m +5*17^m -70*16^m -30*15^m +135*14^m +30*13^m -140*12^m -2*11^m +130*10^m -110*9^m +45*8^m -10*7^m +6^m) \\ G. C. Greubel, Nov 12 2019
-
[32^n-10*24^n+30*20^n-5*18^n+5*17^n-70*16^n-30*15^n +135*14^n +30*13^n-140*12^n-2*11^n+130*10^n-110*9^n+45*8^n-10*7^n +6^n for n in (0..20)] # G. C. Greubel, Nov 12 2019
A069378
Number of n X 3 binary arrays with a path of adjacent 1's from top row to bottom row.
Original entry on oeis.org
7, 37, 197, 1041, 5503, 29089, 153769, 812849, 4296863, 22713981, 120070149, 634712209, 3355201895, 17736195433, 93756691401, 495614587553, 2619907077991, 13849295944501, 73209847696773
Offset: 1
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(7-12*x+x^2+2*x^3-2*x^4)/(1-7*x+9*x^2+x^3-4*x^4+2*x^5))); // G. C. Greubel, Apr 22 2018
-
Rest[CoefficientList[Series[x*(7-12*x+x^2+2*x^3-2*x^4)/(1-7*x+9*x^2+x^3-4*x^4 +2*x^5), {x,0,50}], x]] (* G. C. Greubel, Apr 22 2018 *)
-
x='x+O('x^30); Vec(x*(7-12*x+x^2+2*x^3-2*x^4)/(1 -7*x+9*x^2 +x^3- 4*x^4+2*x^5)) \\ G. C. Greubel, Apr 22 2018
A069379
Number of n X 4 binary arrays with a path of adjacent 1's from top row to bottom row.
Original entry on oeis.org
15, 175, 1985, 22193, 247759, 2764991, 30856705, 344356289, 3842988975, 42887577455, 478623939553, 5341429762353, 59610217019311, 665248512113343, 7424156719466465, 82853403589520257, 924641917817567951
Offset: 1
A280208
Numbers m such that 4^m - 3^m is not squarefree, but 4^d - 3^d is squarefree for every proper divisor d of m.
Original entry on oeis.org
4, 14, 55, 78, 111, 253, 342, 355
Offset: 1
4 is in this sequence because all 4^1 - 3^1 = 1, 4^2 - 3^2 = 7 are squarefrees where 1, 2 are proper divisors of 4 and 4^4 - 3^4 = 175 = 7*5^2 is not squarefree;
14 is in this sequence because all 4^1 = 3^2 = 1, 4^2 - 3^2 = 7, 4^7 - 3^7 = 14197 are squarefrees where 1, 2, 7 are proper divisors of 14 and 4^14 - 3^14 = 263652487 = 7^2*3591*14197 is not squarefree.
Cf. Numbers m such that (k+1)^m - k^m is not squarefree, but (k+1)^d - k^d is squarefree for every proper divisor d of m:
A237043 (k = 1),
A280203 (k = 2), this sequence (k = 3),
A280209 (k = 4),
A280307 (k = 6).
-
Function[s, DeleteCases[#, 0] &@ MapIndexed[#1 Boole[! AnyTrue[Take[s, First@ #2 - 1], Function[k, Divisible[#1, k]]]] &, s]]@ Select[Range@ 80, ! SquareFreeQ[4^# - 3^#] &] (* Michael De Vlieger, Dec 30 2016 *)
A016753
Expansion of 1/((1-3*x)*(1-4*x)*(1-5*x)).
Original entry on oeis.org
1, 12, 97, 660, 4081, 23772, 133057, 724260, 3863761, 20308332, 105558817, 544039860, 2785713841, 14192221692, 72020501377, 364354427460, 1838822866321, 9262446387852, 46585947584737
Offset: 0
-
[(5^(n+2) - 2*4^(n+2) + 3^(n+2))/2: n in [0..30]]; // G. C. Greubel, Sep 15 2018
-
CoefficientList[ Series[ 1/((1 - 3x)(1 - 4x)(1 - 5x)), {x, 0, 25} ], x ]
LinearRecurrence[{12,-47,60}, {1, 12, 97}, 30] (* G. C. Greubel, Sep 15 2018 *)
-
Vec(1/((1-3*x)*(1-4*x)*(1-5*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
A069380
Number of n X 5 binary arrays with a path of adjacent 1's from top row to bottom row.
Original entry on oeis.org
31, 781, 18621, 433809, 10056959, 232824241, 5388274121, 124693133113, 2885579381831, 66776768695477, 1545323639404349, 35761396310047985, 827579980089997079, 19151628770974955241, 443201843190147840905
Offset: 1
A175840
Mirror image of Nicomachus' table: T(n,k) = 3^(n-k)*2^k for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 3, 2, 9, 6, 4, 27, 18, 12, 8, 81, 54, 36, 24, 16, 243, 162, 108, 72, 48, 32, 729, 486, 324, 216, 144, 96, 64, 2187, 1458, 972, 648, 432, 288, 192, 128, 6561, 4374, 2916, 1944, 1296, 864, 576, 384, 256, 19683, 13122, 8748, 5832, 3888, 2592, 1728, 1152, 768, 512
Offset: 0
1;
3, 2;
9, 6, 4;
27, 18, 12, 8;
81, 54, 36, 24, 16;
243, 162, 108, 72, 48, 32;
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- J. O'Connor and E.F. Robertson, Nicomachus of Gerasa, The MacTutor History of Mathematics archive, 2010.
- Jay Kappraff, The Arithmetic of Nicomachus of Gerasa and its Applications to Systems of Proportion, Nexus Network Journal, vol. 2, no. 4 (October 2000).
- Hendrik Lenstra, Aeternitatem Cogita, Nieuw Archief voor Wiskunde, 5/2, maart 2001, pp. 23-28.
- Ivars Peterson, Medieval Harmony, Math Trek, Mathematical Association of America, 1998.
Triangle sums:
A001047 (Row1),
A015441 (Row2),
A016133 (Kn1 & Kn4),
A005061 (Kn2 & Kn3),
A016153 (Fi1& Fi2),
A180844 (Ca1 & Ca4),
A016140 (Ca2, Ca3),
A180846 (Gi1 & Gi4),
A180845 (Gi2 & Gi3),
A016185 (Ze1 & Ze4),
A180847 (Ze2 & Ze3).
-
a175840 n k = a175840_tabf !! n !! k
a175840_row n = a175840_tabf !! n
a175840_tabf = iterate (\xs@(x:_) -> x * 3 : map (* 2) xs) [1]
-- Reinhard Zumkeller, Jun 08 2013
-
A175840 := proc(n,k): 3^(n-k)*2^k end: seq(seq(A175840(n,k),k=0..n),n=0..9);
-
Flatten[Table[3^(n-k) 2^k,{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 08 2013 *)
A300332
Integers of the form Sum_{j in 0:p-1} x^j*y^(p-j-1) where x and y are positive integers with max(x, y) >= 2 and p is some prime.
Original entry on oeis.org
3, 4, 7, 12, 13, 19, 21, 27, 28, 31, 37, 39, 43, 48, 49, 52, 57, 61, 63, 67, 73, 75, 76, 79, 80, 84, 91, 93, 97, 103, 108, 109, 111, 112, 117, 121, 124, 127, 129, 133, 139, 147, 148, 151, 156, 157, 163, 169, 171, 172, 175, 181, 183, 189, 192, 193, 196, 199
Offset: 1
Let p denote an odd prime. Subsequences are numbers of the form
2^p - 1, (A001348) (x = 1, y = 2) (Mersenne numbers),
p*2^(p - 1), (A299795) (x = 2, y = 2),
(3^p - 1)/2, (A003462) (x = 1, y = 3),
3^p - 2^p, (A135171) (x = 2, y = 3),
p*3^(p - 1), (A027471) (x = 3, y = 3),
(4^p - 1)/3, (A002450) (x = 1, y = 4),
2^(p-1)*(2^p-1), (A006516) (x = 2, y = 4),
4^p - 3^p, (A005061) (x = 3, y = 4),
p*4^(p - 1), (A002697) (x = 4, y = 4),
(p^p-1)/(p-1), (A023037),
p^p, (A000312, A051674).
.
The generalized cuban primes A007645 are a subsequence, as are the quintan primes A002649, the septan primes and so on.
All primes in this sequence less than 1031 are generalized cuban primes. 1031 is an element because 1031 = f(5,2) where f(x,y) = x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4, however 1031 is not a cuban prime because 1030 is not divisible by 6.
Indices of the nonzero values of
A300333.
Cf.
A001348,
A299795,
A003462,
A135171,
A027471,
A002450,
A006516,
A005061,
A002697,
A000312,
A051674,
A023037,
A007645.
-
using Primes
function isA300332(n)
logn = log(n)^1.161
K = Int(floor(5.383*logn))
M = Int(floor(2*(n/3)^(1/2)))
k = 2
while k <= K
if k == 7
K = Int(floor(4.864*logn))
M = Int(ceil(2*(n/11)^(1/4)))
end
for y in 2:M, x in 1:y
r = x == y ? k*y^(k - 1) : div(x^k - y^k, x - y)
n == r && return true
end
k = nextprime(k+1)
end
return false
end
A300332list(upto) = [n for n in 1:upto if isA300332(n)]
println(A300332list(200))
Comments