cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 84 results. Next

A069383 Number of n X 8 binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

255, 58975, 12519345, 2541013617, 506544513343, 100193001007135, 19752116290408897, 3888492110032895921, 765068584835726823447, 150495460332124702700743, 29601436900513534956486417, 5822276945638780019957186657, 1145175890285973091225709069559
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A005061, n X 2 A001333, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Extensions

More terms from Sean A. Irvine, Apr 30 2024

A069384 Number of n X 9 binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

511, 242461, 105683341, 43843180113, 17792504911231, 7146486319870849, 2856738227918860537, 1139431807812280823353, 454016084146597129480639, 180827014727915133583355805, 72007238386097441302774324845, 28672084199736350940864453233905
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A005061, n X 2 A001333, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Extensions

More terms from Sean A. Irvine, Apr 30 2024

A069385 Number of n X 10 binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

1023, 989527, 882516857, 746691527217, 615793150236223, 501394148790682463, 405671453894948801169, 327195886636045773364289, 263496356226918378172858791, 212041997127527144580159558415, 170577316159214009818521435822905, 137200626549758017615769211506956897
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A005061, n X 2 A001333, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Extensions

More terms from Sean A. Irvine, Apr 30 2024

A069386 Number of n X 11 binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

2047, 4017157, 7308428597, 12588144461329, 21067276157958271, 34728307983514473409, 56797093221062281961353, 92506527736225809457497129, 150343681421865609328377897039, 244072929303780515911965529991989, 396017759826921556057184566557279157
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A005061, n X 2 A001333, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Extensions

More terms from Sean A. Irvine, Apr 30 2024

A069387 Number of n X 12 binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

4095, 16245775, 60131384705, 210502738714097, 714097521397778495, 2380826437768134741023, 7862987107940658832635809, 25834416752721407468468718385, 84641600245355780352751022513463, 276889755885138056467643815501003447, 905061607197623234620822097612564300097
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A005061, n X 2 A001333, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Extensions

More terms from Sean A. Irvine, Apr 30 2024

A137786 a(n) = 4^n - 3^n - 2^n.

Original entry on oeis.org

-1, -1, 3, 29, 159, 749, 3303, 14069, 58719, 241949, 988503, 4015109, 16241679, 65506349, 263636103, 1059360149, 4251855039, 17050597949, 68331794103, 273715121189, 1096023794799, 4387584060749, 17560800790503, 70274592610229, 281192530396959, 1125052584678749
Offset: 0

Views

Author

Keywords

Comments

a(n) mod 100 = 49 for n = 4*k + 1, k > 0; a(n) mod 100 = 3 for n = 4*k + 2, k >= 0. [Alex Ratushnyak, Jul 03 2012]

Crossrefs

Programs

  • Magma
    I:=[-1,-1,3]; [n le 3 select I[n] else 9*Self(n-1)-26*Self(n-2)+24*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014
  • Maple
    A137786:=n->4^n - 3^n - 2^n; seq(A137786(n), n=0..25); # Wesley Ivan Hurt, Feb 10 2014
  • Mathematica
    Table[4^n - 3^n - 2^n, {n, 0, 25}] (* Bruno Berselli, Jul 04 2012 *)
    LinearRecurrence[{9,-26,24},{-1,-1,3},30] (* Harvey P. Dale, Sep 19 2012 *)
    CoefficientList[Series[-(1 - 8 x + 14 x^2)/((1 - 2 x) (1 - 3 x) (1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • PARI
    a(n) = 4^n-3^n-2^n; \\ Joerg Arndt, Jul 04 2012
    
  • Python
    print([4**n - 3**n - 2**n for n in range(99)])
    # Alex Ratushnyak, Jul 03 2012
    

Formula

G.f.: -(1-8*x+14*x^2)/((1-2*x)*(1-3*x)*(1-4*x)). - Bruno Berselli, Jul 04 2012
a(0)=-1, a(1)=-1, a(2)=3, a(n) = 9*a(n-1) - 26*a(n-2) + 24*a(n-3). - Harvey P. Dale, Sep 19 2012
E.g.f.: exp(2*x)*(exp(2*x) - exp(x) - 1). - Elmo R. Oliveira, Sep 12 2024

Extensions

Offset set to 0, terms corrected, more terms added by Alex Ratushnyak, Jul 03 2012.

A231919 a(n) = 3^n + (4^n - 3^n) * (d(n) - 3), where d(n) = A000005(n).

Original entry on oeis.org

1, 2, -10, 81, -538, 4096, -12010, 65536, 19683, 1048576, -3840010, 49268766, -63920218, 268435456, 1073741824, 8546887871, -16921588858, 205383589230, -272553384010, 3291561314526, 4398046511104, 17592186044416, -70180457820010, 1406245165407356, 847288609443
Offset: 1

Views

Author

Wesley Ivan Hurt, Nov 15 2013

Keywords

Comments

a(n) is negative if and only if n is an odd prime (A065091). If n is prime, then a(n) = - A002250(n). If n is a semiprime (A001358), a(n) gives the n-th power of the number of divisors of n. For example, a(4) = d(4)^4 = 3^4 = 81. Similarly, a(6) = d(6)^6 = 4^6 = 4096.

Crossrefs

Programs

  • Maple
    with(numtheory); A231919:=n->3^n+(4^n-3^n)*(tau(n)-3); seq(A231919(n), n=1..100);
  • Mathematica
    Table[3^n + (4^n - 3^n)(DivisorSigma[0,n] - 3), {n,100}]

Formula

a(n) = A000244(n) + A005061(n) * (A000005(n) - 3).

A264766 Irregular symmetric triangle of coefficients T(n,k) of the polynomials p(n,x) = Sum_{k=0..n} binomial(n+1,k)*(1+x)^(2*k)*(-x)^(n-k) for 0 <= k <= 2*n.

Original entry on oeis.org

1, 2, 3, 2, 3, 9, 13, 9, 3, 4, 18, 40, 51, 40, 18, 4, 5, 30, 90, 165, 201, 165, 90, 30, 5, 6, 45, 170, 405, 666, 783, 666, 405, 170, 45, 6, 7, 63, 287, 840, 1736, 2646, 3039, 2646, 1736, 840, 287, 63, 7, 8, 84, 448, 1554, 3864, 7224, 10424, 11763, 10424, 7224, 3864, 1554, 448, 84, 8, 9, 108, 660, 2646, 7686, 17010, 29520, 40851, 45481, 40851, 29520, 17010, 7686, 2646, 660, 108, 9, 10
Offset: 0

Views

Author

Werner Schulte, Nov 23 2015

Keywords

Examples

			The irregular triangle T(n,k) begins:
n\k:  0   1    2     3     4     5      6      7      8     9    10  11  12
  0:  1
  1:  2   3    2
  2:  3   9   13     9     3
  3:  4  18   40    51    40    18      4
  4:  5  30   90   165   201   165     90     30      5
  5:  6  45  170   405   666   783    666    405    170    45     6
  6:  7  63  287   840  1736  2646   3039   2646   1736   840   287  63   7
  etc.
The polynomial corresponding to row 2 is p(2,x) = 3 + 9*x + 13*x^2 + 9*x^3 + 3*x^4.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^j*Binomial[n + 1, j + 1]*Binomial[2*n - 2*j, k - j], {j, 0, n - Abs[k - n]}]; Table[T[n, k], {n,0,10}, {k,0,2*n}] // Flatten (* G. C. Greubel, Aug 12 2017 *)
  • PARI
    T(n,k) = sum(j=0, n-abs(k-n), (-1)^j*binomial(n+1,j+1)*binomial(2*n-2*j,k-j));
    tabf(nn) = for (n=0, nn, for (k=0, 2*n, print1(T(n, k), ", ");); print();); \\ Michel Marcus, Nov 24 2015

Formula

T(n,k) = Sum_{j=0..n-d} (-1)^j*binomial(n+1,j+1)*binomial(2*n-2*j,k-j) if d = 0 or better d = abs(k-n), and 0 <= k <= 2*n.
Recurrence: T(n,0) = n+1, and T(n,k) = 0 for k < 0 or k > 2*n, and T(n+1,k) = T(n,k-2) + T(n,k-1) + T(n,k) + binomial(2*n+2,k) for k > 0 and n >= 0.
T(n,k) = T(n,2*n-k) for 0 <= k <= 2*n.
p(n,x) = Sum_{k=0..2*n} T(n,k)*x^k = Sum_{k=0..n} (1+x)^(2*k)*(1+x+x^2)^(n-k) = Sum_{k=0..n} binomial(n+1,k)*(1+x+x^2)^k*x^(n-k) for n >= 0.
Recurrence: p(0,x) = 1, and p(n+1,x) = (1+x+x^2)*p(n,x)+(1+x)^(2*n+2), n >= 0.
T(n,n) = Sum_{j=0..n} (-1)^(n-j)*binomial(n+1,j)*binomial(2*j,j) = A000984(n+1)-A002426(n+1) for n >= 0 (see also A163774).
Sum_{n>=0} T(n,n)*x^(n+1) = 1/sqrt(1-4*x) - 1/sqrt(1-2*x-3*x^2) for abs(x) < 1/4.
T(n,n-1) = binomial(2*n+2,n) - A027907(n+1,n) for n > 0.
T(n+1,n)/(n+2) = A000108(n+2) - A001006(n+1) for n >= 0 (see also A058987).
Row sums: p(n,1) = A005061(n+1) for n >= 0.
Alternating row sums: p(n,-1) = 1 for n >= 0.
p(n,-2) = Sum_{k=0..2*n} T(n,k)*(-2)^k = A003462(n+1) for n >= 0.
T(n,k) = Sum_{j=0..k} (-1)^j*A260056(n,j)*binomial(2*n-j,k-j) for 0 <= k <= 2*n.
A260056(n,k) = Sum_{j=0..k} (-1)^j*T(n,j)*binomial(2*n-j,k-j) for 0 <= k <= 2*n.
p(n,-1-x) = Sum{k=0..2*n} A260056(n,k)*x^(2*n-k) for n >= 0.
p(n,-x/(1+x))*(1+x)^(2*n) = Sum_{k=0..2*n} A260056(n,k)*x^k for n >= 0.
Sum_{n>=0} p(n,x)*t^n = 1/((1-t*(1+x)^2)*(1-t*(1+x+x^2))).
p(n,x)*x = (1+x)^(2*n+2) - (1+x+x^2)^(n+1), n >= 0.
T(n,k) = binomial(2*n+2,k+1) - A027907(n+1,k+1) for 0 <= k <= 2*n.

A359200 Triangle read by rows: T(n, k) = A358125(n,k)*binomial(n-1, k), 0 <= k <= n-1.

Original entry on oeis.org

0, 1, 1, 3, 8, 3, 7, 30, 30, 7, 15, 88, 144, 88, 15, 31, 230, 520, 520, 230, 31, 63, 564, 1620, 2240, 1620, 564, 63, 127, 1330, 4620, 8120, 8120, 4620, 1330, 127, 255, 3056, 12432, 26432, 33600, 26432, 12432, 3056, 255, 511, 6894, 32112, 79968, 122976, 122976, 79968, 32112, 6894, 511
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
   0;
   1,     1;
   3,     8,     3;
   7,    30,    30,      7;
  15,    88,   144,     88,     15;
  31,   230,   520,    520,    230,     31;
  63,   564,  1620,   2240,   1620,    564,     63;
 127,  1330,  4620,   8120,   8120,   4620,   1330,    127;
 255,  3056, 12432,  26432,  33600,  26432,  12432,   3056,   255;
 511,  6894, 32112,  79968, 122976, 122976,  79968,  32112,  6894,   511;
1023, 15340, 80460, 229440, 413280, 499968, 413280, 229440, 80460, 15340, 1023;
...
		

Crossrefs

Row sums give 2*A005061(n-1).

Programs

  • Maple
    T := n -> local k; seq((2^n - 2^(n - k - 1) - 2^k)*binomial(n - 1, k), k = 0 .. n - 1);
    seq(T(n), n = 1 .. 11);
  • Mathematica
    T[n_, k_] := (2^n - 2^(n - k - 1) - 2^k)*Binomial[n - 1, k]; Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Amiram Eldar, Dec 20 2022 *)

Formula

T(n, k) = (2^n - 2^(n-k-1) - 2^k)*binomial(n-1, k), for n >= 1 and 0 <= k <= n-1.

A369892 Array read by antidiagonals: T(m, n) is the number of m X n binary arrays with a path of adjacent 1's from top row to bottom row using only left, right, and downward steps.

Original entry on oeis.org

1, 3, 1, 7, 7, 1, 15, 37, 17, 1, 31, 175, 197, 41, 1, 63, 781, 1985, 1041, 99, 1, 127, 3367, 18621, 22193, 5503, 239, 1, 255, 14197, 167337, 433801, 247759, 29089, 577, 1, 511, 58975, 1461797, 8057625, 10056087, 2764991, 153769, 1393, 1, 1023, 242461, 12519345, 144762849, 384409519, 232777209, 30856705, 812849, 3363, 1
Offset: 1

Views

Author

Caleb Stanford, Feb 05 2024

Keywords

Comments

Similar to A359576 but disallowing Up steps.
The sequences are initially similar but differ for 4 X 5 grids (433801 instead of 433809), 4 X 6 grids (8057625 instead of 8057905), and 5 X 5 grids (10056087 instead of 10056959)
Can be calculated by dynamic programming from 1 X n grids to m X n grids by keeping track of the number of grids with each of the 2^n patterns of reachable squares in the last row.
Each row and each column satisfies a linear recurrence with constant coefficients. - Pontus von Brömssen, Feb 05 2025

Examples

			For the 37 2 X 3 grids, see A359576.
The following 4 X 5 grid is a counterexample that is counted by A359576 but not by the present sequence:
    10000
    10111
    11101
    00001
Notice that there is a path of 1s from the top to the bottom, but only via the upward step detour in the third column. There are 8 such 4 X 5 grids, formed from the above by reflection and by toggling the first row, second column and last row, second to last column.
Table starts:
    1      3        7         15          31          63         127 ...
    1      7       37        175         781        3367       14197 ...
    1     17      197       1985       18621      167337     1461797 ...
    1     41     1041      22193      433801     8057625   144762849 ...
    1     99     5503     247759    10056087   384409519   ...
    1    239    29089    2764991   232777209   ...
    1    577   153769   30856705   ...
    1   1393   812849   ...
    1   3363   ...
    1   ...
    ...
		

Crossrefs

First 4 rows are A000225, A005061, A069361, A368809.
First 4 columns are A000012, A001333, A069378, A069379.
Cf. A359576 (up steps allowed).
Previous Showing 51-60 of 84 results. Next