cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 144 results. Next

A097069 Positive integers n such that 2n - 9 is prime.

Original entry on oeis.org

6, 7, 8, 10, 11, 13, 14, 16, 19, 20, 23, 25, 26, 28, 31, 34, 35, 38, 40, 41, 44, 46, 49, 53, 55, 56, 58, 59, 61, 68, 70, 73, 74, 79, 80, 83, 86, 88, 91, 94, 95, 100, 101, 103, 104, 110, 116, 118, 119, 121, 124, 125, 130, 133, 136, 139, 140, 143, 145, 146, 151, 158, 160
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 15 2004

Keywords

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), this seq(k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

Half of p+9 where p is a prime greater than 2.

A097932 Positive integers n such that 2n-19 is prime.

Original entry on oeis.org

11, 12, 13, 15, 16, 18, 19, 21, 24, 25, 28, 30, 31, 33, 36, 39, 40, 43, 45, 46, 49, 51, 54, 58, 60, 61, 63, 64, 66, 73, 75, 78, 79, 84, 85, 88, 91, 93, 96, 99, 100, 105, 106, 108, 109, 115, 121, 123, 124, 126, 129, 130, 135, 138, 141, 144, 145, 148, 150, 151, 156, 163
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 21 2004

Keywords

Crossrefs

Cf. A000040.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), this sequence (k=19).

Programs

Formula

Half of p+19 where p is a prime greater than 2.

A153081 Nonnegative numbers k such that 2k + 13 is prime.

Original entry on oeis.org

0, 2, 3, 5, 8, 9, 12, 14, 15, 17, 20, 23, 24, 27, 29, 30, 33, 35, 38, 42, 44, 45, 47, 48, 50, 57, 59, 62, 63, 68, 69, 72, 75, 77, 80, 83, 84, 89, 90, 92, 93, 99, 105, 107, 108, 110, 113, 114, 119, 122, 125, 128, 129, 132, 134, 135, 140, 147, 149, 150, 152, 159, 162, 167
Offset: 1

Views

Author

Vincenzo Librandi, Dec 18 2008

Keywords

Comments

Or, (p-13)/2 for primes p >= 13.
a(n) = (A000040(n+5) - 13)/2.
a(n) = A005097(n+4) - 6.
a(n) = A067076(n+4) - 5.
a(n) = A089038(n+3) - 4.
a(n) = A105760(n+2) - 3.
a(n) = A101448(n+1) - 1.
a(n) = A089559(n-1) + 1 for n > 1.

Examples

			For k = 7, 2*k+13 = 27 is not prime, so 7 is not in the sequence;
for k = 8, 2*k+13 = 29 is prime, so 8 is in the sequence.
		

Crossrefs

Cf. A000040 (prime numbers).
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), this seq (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Extensions

Edited and extended by Klaus Brockhaus, Dec 22 2008
Definition clarified by Zak Seidov, Jul 11 2014

A097338 Positive integers n such that 2n-11 is prime.

Original entry on oeis.org

7, 8, 9, 11, 12, 14, 15, 17, 20, 21, 24, 26, 27, 29, 32, 35, 36, 39, 41, 42, 45, 47, 50, 54, 56, 57, 59, 60, 62, 69, 71, 74, 75, 80, 81, 84, 87, 89, 92, 95, 96, 101, 102, 104, 105, 111, 117, 119, 120, 122, 125, 126, 131, 134, 137, 140, 141, 144, 146, 147, 152, 159, 161
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 17 2004

Keywords

Crossrefs

Cf. A000040.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), this sequence (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

Half of p+11 where p is a prime greater than 2.

A097480 Positive integers n such that 2n-15 is prime.

Original entry on oeis.org

9, 10, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 34, 37, 38, 41, 43, 44, 47, 49, 52, 56, 58, 59, 61, 62, 64, 71, 73, 76, 77, 82, 83, 86, 89, 91, 94, 97, 98, 103, 104, 106, 107, 113, 119, 121, 122, 124, 127, 128, 133, 136, 139, 142, 143, 146, 148, 149, 154, 161, 163
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 19 2004

Keywords

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), this sequence (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

Half of p+15 where p is a prime greater than 2.

A098605 Positive integers n such that 2n - 17 is prime.

Original entry on oeis.org

10, 11, 12, 14, 15, 17, 18, 20, 23, 24, 27, 29, 30, 32, 35, 38, 39, 42, 44, 45, 48, 50, 53, 57, 59, 60, 62, 63, 65, 72, 74, 77, 78, 83, 84, 87, 90, 92, 95, 98, 99, 104, 105, 107, 108, 114, 120, 122, 123, 125, 128, 129, 134, 137, 140, 143, 144, 147, 149, 150, 155, 162
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 20 2004

Keywords

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), this sequence (k=17), A097932 (k=19).

Programs

Formula

Half of p+17 where p is a prime greater than 2.

A130290 Number of nonzero quadratic residues modulo the n-th prime.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156, 158
Offset: 1

Views

Author

M. F. Hasler, May 21 2007

Keywords

Comments

Row lengths for formatting A063987 as a table: The number of nonzero quadratic residues modulo a prime p equals floor(p/2), or (p-1)/2 if p is odd. The number of squares including 0 is (p+1)/2, if p is odd (rows prime(i) of A096008 formatted as a table). In fields of characteristic 2, all elements are squares. For any m > 0, floor(m/2) is the number of even positive integers less than or equal to m, so a(n) also equals the number of even positive integers less than or equal to the n-th prime. For all n > 0, A130290(n+1) = A005097(n) = A102781(n+1) = A102781(n+1) = A130291(n+1)-1 = A111333(n+1)-1 = A006254(n)-1.
From Vladimir Shevelev, Jun 18 2016: (Start)
a(1)+2 and, for n >= 2, a(n)+1 is the smallest k such that there exists 0 < k_1 < k with the condition k_1^2 == k^2 (mod prime(n)).
Indeed, for n >= 2, if prime(n) = 4*t+1 then k = 2*t+1 = a(n)+1, since (2*t+1)^2 == (2*t)^2 (mod prime(n)) and there cannot be a smaller value of k; if prime(n) = 4*t-1, then k = 2*t = a(n)+1, since (2*t)^2 == (2*t-1)^2 (mod prime(n)). (End)
a(n) is the number of pairs (a,b) such that a + b = prime(n) with 1 <= a <= b. - Nicholas Leonard, Oct 02 2022

Examples

			a(1)=1 since the only nonzero element of Z/2Z equals its square.
a(3)=2 since 1=1^2=(-1)^2 and 4=2^2=(-2)^2 are the only nonzero squares in Z/5Z.
a(1000000) = 7742931 = (prime(1000000)-1)/2.
		

Crossrefs

Essentially the same as A005097.
Cf. A102781 (Number of even numbers less than the n-th prime), A063987 (quadratic residues modulo the n-th prime), A006254 (Numbers n such that 2n-1 is prime), A111333 (Number of odd numbers <= n-th prime), A000040 (prime numbers), A130291.
Appears in A217983. - Johannes W. Meijer, Oct 25 2012

Programs

Formula

a(n) = floor( A000040(n)/2 ) = #{ even positive integers <= A000040(n) }
a(n) = A055034(A000040(n)), n>=1. - Wolfdieter Lang, Sep 20 2012
a(n) = A005097(n-[n>1]) = A005097(max(n-1,1)). - M. F. Hasler, Dec 13 2019

A173059 Nonnegative numbers k such that 2*k + 17 is prime.

Original entry on oeis.org

0, 1, 3, 6, 7, 10, 12, 13, 15, 18, 21, 22, 25, 27, 28, 31, 33, 36, 40, 42, 43, 45, 46, 48, 55, 57, 60, 61, 66, 67, 70, 73, 75, 78, 81, 82, 87, 88, 90, 91, 97, 103, 105, 106, 108, 111, 112, 117, 120, 123, 126, 127, 130, 132, 133, 138, 145, 147, 148, 150, 157, 160, 165
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), this seq (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

  • GAP
    Filtered([0..200], k-> IsPrime(2*k+17) ); # G. C. Greubel, May 22 2019
  • Magma
    [n: n in [0..200] | IsPrime(2*n+17) ]; // G. C. Greubel, May 22 2019
    
  • Mathematica
    (Prime[Range[7,100]]-17)/2
  • PARI
    is(n)=isprime(2*n+17) \\ Charles R Greathouse IV, Feb 17 2017
    
  • Sage
    [n for n in (0..200) if is_prime(2*n+17) ] # G. C. Greubel, May 22 2019
    

Extensions

Definition clarified by Zak Seidov, Jul 11 2014

A016014 Least k such that 2*n*k + 1 is a prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 3, 3, 1, 5, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 5, 3, 1, 2, 1, 1, 2, 3, 1, 3, 1, 4, 2, 1, 2, 3, 3, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 6, 2, 3, 3, 1, 2, 1, 3, 2, 1, 1, 2, 4, 3, 2, 1, 1, 3, 3, 1, 2, 4, 1, 5, 1, 2, 6, 1, 2, 2, 1, 1, 3, 7, 2, 5, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Is the sequence bounded? - Zak Seidov, Mar 25 2014
Answer: No, for any given N a number n such that a(n) > N can be constructed by the Chinese Remainder Theorem, see A239727. - Charles R Greathouse IV, Mar 25 2014
a(n) = 1 for n in A005097. - Robert Israel, Oct 26 2016

Crossrefs

A070846 contains the corresponding primes.
Records are in A239746 with indices in A239727.

Programs

  • Maple
    f:= proc(n) local k;
         for k from 1 do if isprime(2*n*k+1) then return k fi od
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 26 2016
  • Mathematica
    Do[k = 1; cp = n*k + 1; While[ ! PrimeQ[cp], k++; cp = n*k + 1]; Print[k], {n, 2, 400, 2}] (* Lei Zhou, Feb 23 2005 *)
    lk[n_]:=Module[{k=1},While[!PrimeQ[2n k+1],k++];k]; Array[lk,100] (* Harvey P. Dale, Apr 23 2023 *)
  • PARI
    a(n)=my(k); while(!isprime(2*n*(k++)+1),);k \\ Charles R Greathouse IV, Mar 25 2014
    
  • Python
    from sympy import isprime
    def a(n):
        k = 1
        while not isprime(2*n*k + 1): k += 1
        return k
    print([a(n) for n in range(1, 100)]) # Michael S. Branicky, Mar 28 2022

A037225 a(n) = phi(2n+1).

Original entry on oeis.org

1, 2, 4, 6, 6, 10, 12, 8, 16, 18, 12, 22, 20, 18, 28, 30, 20, 24, 36, 24, 40, 42, 24, 46, 42, 32, 52, 40, 36, 58, 60, 36, 48, 66, 44, 70, 72, 40, 60, 78, 54, 82, 64, 56, 88, 72, 60, 72, 96, 60, 100, 102, 48, 106, 108, 72, 112, 88, 72, 96, 110, 80, 100, 126, 84, 130
Offset: 0

Views

Author

Keywords

Comments

Bisection of A000010 (cf. A062570).
From Alain Rocchelli, Jun 28 2023: (Start)
If 2*n+1 has r distinct odd prime factors, 2^r divides a(n).
Conjectures:
1) For any composite integer 2*n+1, a(n) doesn't divide 2*n.
2) For all n, a(n) is never equal to n. (End)

Crossrefs

Programs

Formula

Sum_{k=0..n} a(k) ~ c * n^2, where c = 8/Pi^2 = 0.810569... (A217739). - Amiram Eldar, Nov 17 2022
a(n) = 2*n iff 2*n+1 is prime, see A005097. - Alain Rocchelli, Jun 22 2023
From Peter Bala, Feb 01 2024: (Start)
Odd bisection of A000010.
a(n) = 2*A072451(n) for n >= 1.
G.f.: Sum_{n >= 1} phi(2*n+1)*x^(2*n+1) = Sum_{n >= 1} moebius(n)*x^(2*n-1)*(1 + x^(4*n-2))/(1 - x^(4*n-2))^2 = x + 2*x^3 + 4*x^5 + 6*x^7 + 6*x^9 + .... (End)
Previous Showing 21-30 of 144 results. Next