cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 144 results. Next

A130800 Numbers k such that both 2k+1 and 3k+1 are primes.

Original entry on oeis.org

2, 6, 14, 20, 26, 36, 50, 54, 74, 90, 116, 140, 146, 174, 200, 204, 210, 224, 230, 270, 284, 306, 330, 336, 350, 354, 384, 404, 410, 426, 440, 476, 510, 516, 554, 564, 596, 600, 624, 644, 650, 704, 714, 726, 740, 746, 834, 846, 894, 930, 944, 950, 1026, 1040
Offset: 1

Views

Author

Max Alekseyev, Jul 18 2007

Keywords

Comments

Also: k such that A033570(k) is semiprime. All terms are congruent to 0 or 2 modulo 6. - M. F. Hasler, Dec 13 2019

Crossrefs

Intersection of A005097 and A024892. - M. F. Hasler, Dec 13 2019
Cf. A033570; A255584: semiprimes of the form (4*n+1)*(6*n+1).

Programs

  • Magma
    [n: n in [0..500] | IsPrime(2*n+1) and IsPrime(3*n+1)]; // Vincenzo Librandi, Nov 23 2010
    
  • Mathematica
    Select[Range[1100],AllTrue[{2,3}#+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 17 2016 *)
  • PARI
    select( is_A130800(n)=isprime(2*n+1)&&isprime(3*n+1), [1..1111]) \\ M. F. Hasler, Dec 13 2019

Formula

a(n) = 2*A255607(n). - M. F. Hasler, Dec 13 2019

Extensions

More terms from Vincenzo Librandi, Mar 26 2010

A266409 a(n) = (A003309(n+2)-1) / 2; numbers n such that 2n+1 is a Ludic number (in A003309).

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 11, 12, 14, 18, 20, 21, 23, 26, 30, 33, 35, 38, 41, 44, 45, 48, 53, 57, 59, 60, 63, 65, 71, 74, 78, 80, 86, 87, 89, 90, 96, 104, 105, 110, 111, 113, 116, 117, 119, 123, 128, 132, 138, 141, 143, 150, 153, 156, 164, 165, 168, 170, 176, 179, 180, 188, 191, 194, 198, 203, 207, 209, 210, 215
Offset: 1

Views

Author

Antti Karttunen, Jan 28 2016

Keywords

Comments

Ludic numbers from A003309(2) = 3 onward, decremented by one, then halved.

Crossrefs

Complement: A266410.
Cf. A266350 (least monotonic left inverse).
Cf. permutations A266418, A266638.
Cf. also A005097.

Formula

a(n) = (A003309(n+2)-1) / 2.
Other identities. For all n >= 1:
A266350(a(n)) = n.

A130291 Number of quadratic residues (including 0) modulo the n-th prime.

Original entry on oeis.org

2, 2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 19, 21, 22, 24, 27, 30, 31, 34, 36, 37, 40, 42, 45, 49, 51, 52, 54, 55, 57, 64, 66, 69, 70, 75, 76, 79, 82, 84, 87, 90, 91, 96, 97, 99, 100, 106, 112, 114, 115, 117, 120, 121, 126, 129, 132, 135, 136, 139, 141, 142, 147, 154, 156, 157
Offset: 1

Views

Author

M. F. Hasler, May 21 2007

Keywords

Comments

The number of squares (quadratic residues including 0) modulo a prime p (sequence A096008 with every "1" prefixed by a "0") equals 1+floor(p/2), or ceiling(p/2) = (p+1)/2 if p is odd. (In fields of characteristic 2, all elements are squares.) See A130290(n)=A130291(n)-1 for number of nonzero residues. For all n>0, A130291(n+1) = A111333(n+1) = A006254(n) = A005097(n)-1 = A102781(n+1)-1 = A102781(n+1)-1 = A130290(n+1)-1.

Examples

			a(1)=2 since both elements of Z/2Z are squares.
a(3)=0 since 0=0^2, 1=1^2=(-1)^2 and 4=2^2=(-2)^2 are squares in Z/5Z.
a(1000000) = 7742932 = (p[1000000]+1)/2.
		

Crossrefs

Essentially the same as A006254.
Cf. A005097 (Odd primes - 1)/2, A102781 (Integer part of n#/(n-2)#/2#), A102781 (Number of even numbers less than the n-th prime), A063987 (quadratic residues modulo the n-th prime), A006254 (Numbers n such that 2n-1 is prime), A111333 (Number of odd numbers <= n-th prime), A000040 (prime numbers), A130290 (number of nonzero residues modulo primes).

Programs

Formula

a(n) = floor( A000040(n)/2 )+1

A269252 Define a sequence by s(k) = n*s(k-1) - s(k-2), with s(0) = 1, s(1) = n - 1. a(n) is the smallest index k such that s(k) is prime, or -1 if no such k exists.

Original entry on oeis.org

-1, -1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 14, 1, 2, 2, 3, 1, 2, 5, 2, 36, 2, 1, 2, 1, 15, -1, 6, 2, 3, 1, 2, 2, 6, 1, 3, 1, 2, 2, 2, 1, 2, 3, 2, -1, 3, 1, 2, 2, 2, 6, 3, 1, 2, 1, 30, 3, 2, 2, 2, 1, 2, 5, 2, 1, 5, 1, 6, 3, 2, 6, 3, 1, 8, 6, 14, 1, 3
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 09 2016

Keywords

Comments

For n >= 2, positive integer k yielding the smallest prime of the form (x^y + 1/x^y)/(x + 1/x), where x = (sqrt(n+2) +/- sqrt(n-2))/2 and y = 2*k + 1, or -1 if no such k exists.
Every positive term belongs to A005097.
For detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018

Examples

			Let b(k) be the recursive sequence defined by the initial conditions b(0) = 1, b(1) = 10, and the recursive equation b(k) = 11*b(k-1) - b(k-2). a(11) = 2 because b(2) = 109 is the smallest prime in b(k).
Let c(k) be the recursive sequence defined by the initial conditions c(0) = 1, c(1) = 12, and the recursive equation c(k) = 13*c(k-1) - c(k-2). a(13) = 3 because c(3) = 2003 is the smallest prime in c(k).
		

Crossrefs

Programs

  • Magma
    lst:=[]; for n in [1..85] do if n in [1, 2, 34, 52] then Append(~lst, -1); else a:=1; c:=1; t:=0; repeat b:=n*a-c; c:=a; a:=b; t+:=1; until IsPrime(a); Append(~lst, t); end if; end for; lst;
  • Mathematica
    s[k_, m_] := s[k, m] = Which[k == 0, 1, k == 1, 1 + m, True, m s[k - 1, m] - s[k - 2, m]]; Table[SelectFirst[Range[120], PrimeQ@ Abs@ s[#, -n] &] /. k_ /; MissingQ@ k -> -1, {n, 85}] (* Michael De Vlieger, Feb 03 2018 *)

Formula

If n is prime then a(n+1) = 1.

A289585 Quotients as they appear as k increases when tau(k) divides phi(k).

Original entry on oeis.org

1, 1, 2, 3, 1, 2, 1, 5, 6, 2, 8, 1, 9, 3, 11, 1, 3, 2, 14, 1, 15, 5, 4, 6, 18, 6, 2, 20, 21, 4, 23, 14, 8, 4, 26, 10, 3, 9, 7, 29, 30, 6, 12, 33, 11, 3, 35, 2, 36, 9, 6, 15, 3, 39, 10, 41, 2, 16, 14, 5, 44, 2, 18, 15, 18, 48, 7, 10, 50, 4, 51, 6, 6, 13, 53, 3, 54, 5, 18, 56, 22, 12, 24, 2
Offset: 1

Views

Author

Bernard Schott, Jul 08 2017

Keywords

Comments

Numbers k such that tau(k) divides phi(k) are in A020491.
Only for seven integers which are in A020488, we have a(n) = 1.
The integers such that a(n) = 2, 3, 4 are respectively in A062516, A063469, A063470.
When p is an odd prime then phi(p) = p-1, tau(p) = 2, so phi(p)/tau(p) = (p-1)/2 and A005097 is an infinite subsequence.
For k = A058891(m+1), that is 2^A000225(m), with m>=2, the corresponding quotient phi(k)/tau(k) is the integer A076688(m). - Bernard Schott, Aug 15 2020

Examples

			a(10) = 2 because A020491(10) = 15 and phi(15)/tau(15) = 8/4 = 2.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 50 do q:=phi(n)/tau(n);
    if q=floor(q) then print(n,q,phi(n),tau(n)) else fi; od:
  • Mathematica
    f[n_] := Block[{d = EulerPhi[n]/DivisorSigma[0, n]}, If[ IntegerQ@d, d, Nothing]]; Array[f, 120] (* Robert G. Wilson v, Jul 09 2017 *)
  • PARI
    lista(nn) = {for (n=1, nn, q = eulerphi(n)/numdiv(n); if (denominator(q)==1, print1(q, ", ")););} \\ Michel Marcus, Jul 10 2017

Formula

a(n) = A000010(A020491(n)) / A000005(A020491(n)). - David A. Corneth, Jul 09 2017

A364678 Maximum number of primes between consecutive multiples of n, as permitted by divisibility considerations.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 5, 7, 7, 6, 7, 7, 7, 7, 8, 7, 8, 9, 8, 10, 8, 10, 10, 10, 11, 11, 11, 10, 11, 11, 11, 12, 12, 12, 12, 13, 12, 13, 14, 13, 13, 14, 14, 15, 15, 14, 15, 15, 15, 16, 15, 15, 16, 16, 17, 16, 17, 18, 18, 18, 18, 18, 17, 19, 19, 19, 19, 20, 20, 19, 19, 20, 21, 21
Offset: 1

Views

Author

Brian Kehrig, Aug 24 2023

Keywords

Comments

Alternatively: a(n) = the maximum number of elements of an admissible k-tuple strictly contained in (0,n) such that all elements are relatively prime to n. Recall that an admissible tuple is defined as a tuple of integers with the property that all primes p have at least one residue class that has no intersection with the tuple.
For n > 1, we have a(n) <= A023193(n-1), with equality if (but not only if) n is prime or a power of 2. The smallest n for which it is not an equality is n=14.
Conjecture 1: Every nonnegative integer appears in this sequence.
Conjecture 2: For all n, there is an infinitude of k's such that there are a(n) primes between n*k and n*(k+1).
Conjecture 2 resembles the k-tuples conjecture a.k.a. the first Hardy-Littlewood conjecture, although it is not the same.
A notable value is a(35) = 8. Compare with A000010(210) = 48. This says that between any two consecutive multiples of 210 the 48 values that are not divisible by 2, 3, 5 or 7 are equally distributed between 6 equal divisions of 210; that is, 8 are in the interval [0, 34], 8 in the interval [35, 69], etc. - Peter Munn, Feb 16 2024

Examples

			Between two multiples of 15 (n and n+15), only n+1, n+2, n+4, n+7, n+8, n+11, n+13, and n+14 could possibly be prime based on divisibility by 3 and 5. However, 4 of these are even and 4 are odd, so at most 4 of them can be prime. Thus, a(15)=4.
		

Crossrefs

Multiples of n following which the maximum number of primes occur for particular n: A005097 (2), A144769 (3), A123986 (4), A056956 (6), A007811 (10), A123985 (12), A309871 (18).

Programs

  • Python
    # see Links section

A066886 Sum of the elements in any transversal of a prime(n) X prime(n) array containing the numbers from 1 to prime(n)^2 in standard order.

Original entry on oeis.org

5, 15, 65, 175, 671, 1105, 2465, 3439, 6095, 12209, 14911, 25345, 34481, 39775, 51935, 74465, 102719, 113521, 150415, 178991, 194545, 246559, 285935, 352529, 456385, 515201, 546415, 612575, 647569, 721505, 1024255, 1124111, 1285745
Offset: 1

Views

Author

Enoch Haga, Jan 22 2002

Keywords

Comments

a(n) is the sum of the primes in a prime(n) X prime(n) example of Haga's conjecture (see link below).

Crossrefs

Programs

  • Maple
    map(t -> t*(t^2+1)/2, [seq(ithprime(i),i=1..100)]); # Robert Israel, Apr 04 2018
  • Mathematica
    a[n_] := Prime[n] (Prime[n]^2 + 1)/2; Table[a[n], {n, 50}]
  • PARI
    apply(x->(x*(x^2+1)/2), primes(100)) \\ Michel Marcus, Apr 04 2018

Formula

a(n) = prime(n)*(prime(n)^2+1)/2, where prime(n) is the n-th prime.
a(n) = A006003(prime(n)). - Michel Marcus, Apr 04 2018
a(n) = A006254(n-1)^4 - A005097(n-1)^4, for n>1. - Dimitris Valianatos, Apr 10 2018

Extensions

Edited by Dean Hickerson, Jun 08 2002

A086668 Number of divisors d of n such that 2d+1 is a prime.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 1, 3, 3, 3, 2, 4, 1, 3, 4, 3, 1, 6, 1, 4, 3, 3, 2, 5, 2, 3, 3, 3, 2, 7, 1, 3, 4, 2, 3, 7, 1, 2, 3, 5, 2, 6, 1, 4, 5, 3, 1, 6, 1, 4, 3, 3, 2, 7, 3, 5, 2, 3, 1, 8, 1, 2, 5, 3, 3, 6, 1, 3, 4, 5, 1, 8, 1, 3, 5, 2, 2, 7, 1, 5, 4, 3, 2, 6, 2, 3, 3, 5, 2, 10, 1, 3, 2, 2, 3, 7, 1, 4, 6, 5
Offset: 1

Views

Author

Jon Perry, Jul 27 2003

Keywords

Comments

From Antti Karttunen, Jun 15 2018: (Start)
Number of terms of A005097 that divide n.
For all n >= 1, a(n) > A156660(n). Specifically, a(p) = 2 for all p in A005384 (Sophie Germain primes), although 2's occur in other positions as well.
(End)

Examples

			10 has divisors 1,2,5 and 10 of which 2.1+1, 2.2+1 and 2.5+1 are prime, so a(10)=3
		

Crossrefs

One less than A046886.

Programs

Formula

From Antti Karttunen, Jun 15 2018: (Start)
a(n) = Sum_{d|n} A101264(d).
a(n) = A305818(n) + A101264(n).
(End)

Extensions

Definition modified by Harvey P. Dale, Apr 29 2015

A138239 Triangle read by rows: T(n,k) = A000040(k) if A002445(n) mod A000040(k) = 0, otherwise 1.

Original entry on oeis.org

1, 2, 3, 2, 3, 5, 2, 3, 1, 7, 2, 3, 5, 1, 1, 2, 3, 1, 1, 11, 1, 2, 3, 5, 7, 1, 13, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 17, 1, 1, 2, 3, 1, 7, 1, 1, 1, 19, 1, 1, 2, 3, 5, 1, 11, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 2, 3, 5, 7, 1, 13, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Mats Granvik, Mar 07 2008

Keywords

Comments

Row products give A002445.
A prime number appears in a column at every A130290-th row from the (A130290+1)-th row onwards. The prime numbers are, so to speak, equidistantly distributed in the columns. A130290 is essentially A005097. Counting terms > 1 in the rows gives A046886.

Examples

			First few rows of the triangle and row products are:
1 = 1
2*3 = 6
2*3*5 = 30
2*3*1*7 = 42
2*3*5*1*1 = 30
2*3*1*1*11*1 = 66
2*3*5*7*1*13*1 = 2730
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> (p-> `if`(irem(denom(bernoulli(2*n)), p)=0, p, 1))(ithprime(k)):
    seq(seq(T(n, k), k=1..n+1), n=0..20);  # Alois P. Heinz, Aug 27 2017
  • Mathematica
    t[n_, k_] := If[Mod[Denominator[BernoulliB[2n]], (p = Prime[k])] == 0, p, 1];
    Flatten[Table[t[n, k], {n, 0, 13}, {k, 1, n+1}]][[1 ;; 102]] (* Jean-François Alcover, Jun 16 2011 *)
  • PARI
    tabl(nn) = {for (n=0, nn, dbn = denominator(bernfrac(2*n)); for (k=1, n+1, if (! (dbn % prime(k)), w = prime(k), w = 1); print1(w, ", "); ); print; ); } \\ Michel Marcus, Aug 27 2017

Extensions

Definition edited by N. J. A. Sloane, Mar 18 2010
Offset corrected by Alois P. Heinz, Aug 27 2017

A154111 Numbers n such that (n+1)^2 - n^3 is a (positive or negative) prime.

Original entry on oeis.org

1, 3, 5, 6, 8, 11, 12, 15, 18, 20, 27, 33, 35, 39, 41, 45, 48, 50, 54, 65, 66, 68, 86, 87, 92, 96, 99, 107, 116, 122, 123, 126, 138, 140, 149, 150, 156, 159, 161, 164, 165, 167, 170, 177, 182, 185, 188, 191, 192, 198, 200, 207, 209, 219, 228, 237, 239, 240, 242, 252
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Previous Showing 51-60 of 144 results. Next